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An Algebraic Approach to Some Number-Theoretic Problems
Arising from Paper-Folding Regular Polygons

JON FROEMKE AND JERROLD W. GROSSMAN

JoN FROEMKE: I received my Ph.D. from the University of California at
Berkeley in 1967 in universal algebra under the direction of Alfred Foster. I
have been at Oakland University ever since. This article represents a return
to number theory, my first love, and in an unusual way, a continuation of my
interest in the arithmetic of primal algebras.

JERROLD W. GROSSMAN: I specialized in mathematical logic at Stanford
University (B.S., M.S. in 1970), studied algebraic topology at M.L.T. (Ph.D.
in 1974 under Daniel Kan), and have been at Oakland University since 1974.
My research articles have dealt with algebraic topology, algebra, graph
theory, combinatorics, probability and statistics, computer science, and now,
apparently, number theory.

Introduction. Since 1983 Peter Hilton and Jean Pedersen have been studying the
ramifications of an ingenious paper-folding construction they devised for approxi-
mating angles and regular polygons [2],[3], [4],[5],[6], [7]. They are quickly led into
number-theoretic questions. In this article we will see that with the use of some
additional tools of graph theory, number theory, and algebra, we can more fully
explain the phenomena they are studying. We also pose some new questions they
have not raised and answer many of them. Perhaps not surprisingly, our investiga-
tions touch on several aspects of elementary number theory and lead quickly to
some of its famous unsolved problems. On the other hand, Hilton and Pedersen
pursue other interesting number-theoretic aspects of the construction, which we do
not consider, so in no sense does our paper supersede their work.

This article is somewhat self-contained, in the sense that most of the number
theory we need is reviewed herein. The underlying problems are extremely easy to
state, and thus the article should be accessible to a wide audience. Indeed, the basic
numerical construction proved fascinating to the first author’s ten-year-old son, who
could appreciate the questions being raised, but not, of course, the reasons behind
their answers.

In what follows, we will let Z denote the set of integers, and for integers x and y
we will let (x, y) and [x, y] denote their greatest common divisor and least common
multiple, respectively (with the obvious extensions to more than two variables).

Since the statement of the problems we are considering cannot be given until
Section 2, it would be meaningless to give an outline of the paper at this point. The
usual preview, section by section, is instead given at the end of Section 2.

289



290 JON FROEMKE AND JERROLD W. GROSSMAN [April

1. Folding angles: the geometric motivation. Hilton and Pedersen have a clever
method for approximating rational angles, to any desired degree of accuracy, using
only an elementary paper-folding operation: bisecting an angle. (By rational angle
we mean an angle whose measure is a rational number of degrees.) We summarize
their procedure briefly. Although the geometric problem has no direct bearing on
the rest of this paper, it serves as the motivation for considering the numerical
construction of Section 2.

Let r, = aw/b be a given acute rational angle, i.e., assume that 0 < a < b/2,
where a and b are integers with (a, b) = 1. Call b the denominator of r,. For their
purposes, Hilton and Pedersen assume initially that b is odd, and we will also (for
now) make this assumption. Suppose angle 7, is formed between the bottom edge of
a long strip of paper and a fold in the paper (see FIGURE 1).

Ve
/
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/
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ﬂ )

If a is even, say a = 2a’, then by folding the original crease onto the bottom
edge of the strip, we can construct angle r; = a’w/b (see FIGURE 2).

F1G. 1. Angle r, on a strip of paper.

FI1G. 2. Bisecting am/b when a is even.

On the other hand, if a is odd, then the supplementary adjacent interior angle at
the top of the strip has measure (b — a)7/b, with (b — a) even, say equal to 2a”’.
We can, therefore, bisect it by folding the original crease onto the top edge of the
strip and, thereby, form r; = a7 /b along the top of the strip (see FIGURE 3).

n
1//1

F1G. 3. Bisecting (b — a)m/b when a is odd.

Iterating this procedure, we obtain a sequence of acute rational angles 7, r, 7,, . ..
with denominator b. It turns out (as a consequence of some observations in Section
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2) that the sequence is cyclic, and hence that r, = r, for some k (to be called the
quasiorder of 2 mod b). See FIGURE 4.

’2 s
\ To 3

Fi1G. 4. ry = r,.

Now if in fact r, is only an approximation to aw /b, say with a small error ¢, then
it is easy to see that the r, constructed by this procedure is again an approximation
to am/b, but with error /2% Thus, by iterating the process, we can construct
arbitrarily good approximations to aw/b.

Using this paper-folding procedure, Hilton and Pedersen devised a systematic
method for constructing arbitrarily good approximations to any regular convex
polygon or regular star polygon.

2. Charm bracelets: the numerical construction. Isolating the numerical ingredi-
ents of the foregoing geometric construction, we have simply the following oper-
ation on the set of positive integers less than b and relatively prime to b, where b is
a fixed odd integer greater than 2:

if a is even, then halve it, i.e., let a’ = a/2;
if a is odd, then subtract it from b, i.e.,let a’ = b — a.

(The reader may have noticed the similarity of this operation to the one that appears
in the Collatz problem [9], although we have found nothing here that seems relevant
to that notorious problem.) We will find it easier (but equivalent) in what follows to
work instead with the opposite operation, which we now define.

DEFINITION. Let V(b) = {a € Z|0 < a < b and (a, b) = 1}. The function f,:
V(b) = V(b) is given by the rule

_[2a ifa<b/2
fala) = {b—a ifa>b/2°

(The subscript is 2 because of the multiplication by 2; we generalize this later.) To
get a picture of this operation, we construct, for each odd b > 1, a graph whose
vertices are the elements of V(b) and whose edges are all the unordered pairs
(a, f,(a)). (If b =3, then we put two edges between 1 and 2, since f,(1) = 2 and
£,(2) = 1.) The graph for b = 17 is shown in FIGURE 5.
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Fi1G. 5. The graph for b = 17.

The following observations about these graphs follow immediately from the
definitions.

1. Eath vertex a for which a is odd and greater than b/2 has degree 1, being
adjacent only to b — a. Such values of a we will call charms.

2. Each vertex a for which a is even and less than b/2 has degree 3, being
adjacent to 2a, a/2, and the charm b — a.

3. Each vertex a for which a is even and greater than b/2 has degree 2, being
adjacent to b — a and a/2.

4. Each vertex a for which a is odd and less than b/2 has degree 2, being
adjacent to b — a and 2a.

Now if we momentarily discard the charms, then every vertex has degree 2, and
hence (by a trivial result of graph theory) the graph consists of one or more disjoint
cycles (polygons). We call such a cycle, together with all the charms connected to it,
a bracelet. We call the number of vertices in a bracelet its weight, and (continuing
the jewelry metaphor) we call the number of noncharms in a bracelet its size.
Finally we let B(2, b) denote the number of bracelets in the graph. For b = 17, we
see from FIGURE 5 that B(2,17) = 2, that the weight of each bracelet is 8, and that
the sizes of the two bracelets are 5 and 7, respectively.

Our bracelet graph replaces Hilton and Pedersen’s “symbol” for representing the
same information. They would display the second bracelet in FIGURE 5, for
example, as

3 75
17‘ 11 2 '

This symbol is interpreted as follows: beginning with a = 3, we subtract a from 17
and divide the answer (14) as many times as we can by the number 2 (in this case,
we divide once, obtaining the number 7 as the next value of a). The number of
factors of 2 that were divided out appears in the second row, and the next value of a
appears in the first row of the next column. The process is repeated until the
original value of a is obtained. Two differences between our approaches are worth
noting. First, Hilton and Pedersen list only the odd values of a less than b/2; the
missing intermediate even values are implied and the second row in each column
shows the number of missing even values. (Hilton and Pedersen use their symbol,
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among other things, to succinctly encode the instructions for paper-folding ap-
proximations to star polygons.) Second, the symbol, as read from left to right,
represents divisions by 2, rather than multiplications by 2, as in our approach,
although Hilton and Pedersen also present a multiplication-based, as well as a
division-based, “quasi-order algorithm.” At this point, the differences are minor,
but we will see that the bracelet symbolism clarifies the situation when we gener-
alize, in Section 3, from multiplication (or division) by 2 to multiplication (or
division) by an arbitrary number ¢.

We will sometimes find it convenient to modify our way of looking at things by
identifying each number a in V(b) with b — a. This is more in the spirit of the
geometric construction, where we considered only acute angles.

DEFINITION. Let D(b) = {a € Z|0 <a <b/2 and (a, b) = 1}. The function
g,: D(b) — D(b) is given by the rule

(a) = |24 if2a < b/2
8=\ p—2a if2a>bs2

To obtain a visual model of the structure induced by g,, we need only draw a box
around each pair (a, b — a) in the graphs obtained above (see FIGURE 6 for the
situation when b = 17).

O EF
a Y

F1G. 6. Dominoes for b = 17.

We will call each such pair a domino, so that each bracelet can now be thought of
simply as a cycle of dominoes. The cyclic geometric construction of Section 1 is
represented by this graph: the domino containing a € D(b) corresponds to the
acute angle aw/b. Note that as a consequence of this view, we obtain our first easy
fact about bracelets.

PROPOSITION 1. The weight of a bracelet is always even.

If one computes (either by hand or, more easily, with a computer) the bracelet
structures for some small values of b, especially for b prime, then one is led to an
almost inexhaustible set of questions and conjectures. (To provide the reader with
some examples for our discussion, we display a brief set of data in the Appendix.)
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For example, do all the bracelets for a given b have the same weight? Do they all
have sizes of the same parity? Is there any way to “compute” the number of
bracelets, B(2, b)?

In the remainder of this article, then, we will explore such questions, with an
emphasis on what can be said about the function B. In Section 3, we lay out the
basic number-theoretic and group-theoretic way of looking at this problem, gener-
alizing from 2 as the generator to an arbitrary ¢ relatively prime to an arbitrary
b > 2. In Section 4 we give a formula for computing the number of bracelets, their
weights, and the parity of their sizes. Restricting ourselves to prime b in Section 9,
we look more closely at how ¢ and b determine the bracelet structure and
specifically the number of bracelets. In Section 6 we extend the investigation to
powers of primes and in Section 7 to arbitrary composite b; we will see that the set
of prime factors of b tells essentially the whole story. Finally we close, in Section 8,
with a few open-ended musings.

In addition to the work of Hilton and Pedersen, we mention that of J. B. Roberts
[13], whose work anticipates some of ours, and H. P. Lawther, Jr. [10], who applied
some related ideas to the splicing of telephone cables.

3. Some number theory and a slight generalization. In order to continue our
investigation, it will be helpful to recall some elementary terminology and results
from number theory and group theory.

Fix a (not necessarily odd) number b > 2. First note that we need not restrict
ourselves to working with the set V() of numbers relatively prime to b and less than
b, because we are really working modulo b. Indeed, V(b) is simply a collection of
representatives for the set Z} of reduced residue classes modulo b, which forms a
finite abelian group under multiplication. Recall that the order of Z}, i.e., the
cardinality of V(b), is denoted by ¢(b).

For ¢ relatively prime to b, we consider the sequence ¢, ¢% ¢°,.... For some
n > 0 we must have " = 1 (mod b); indeed, t*® = 1 (mod b). The least such 7 is
called the order of t mod b, and we shall denote it by o(¢, b). In fact, t"=1
(mod b) if and only if o(z, b) is a divisor of n. Now it might happen that in the
sequence ¢, t2, ¢3,..., the number —1 (mod b) occurs before 1 does; this possibility
has fundamental significance for the problems we are studying. Thus we make the
following definition (which appears in [6] and, under different names, in [10] and
[13], as well).

DEerFINITION. Let ¢ and b be relatively prime integers, b > 2. The quasi-order of ¢
mod b, denoted g(¢, b), is the least positive integer k such that t* = +1 (mod b). If
195 = —1 (mod b), then we call ¢ basic (mod b), and if 1%*? =1 (mod b), then
we call t nonbasic (mod b).

Note that g(¢, b) must equal either o(z, b) or o(t,b)/2, since if tk= +1
(mod b), then ¢?* = 1 (mod b). The following fact about quasi-order can be proved
in a manner similar to the corresponding fact about order.
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PROPOSITION 2. Let t and b be relatively prime integers, b > 2. Then t"= +1
(mod b) if and only if q(t, b) is a divisor of n.

If o(t, b) = ¢(b), then the set {z, 2, ¢3..., %)) represents all the reduced
residue classes mod b, and hence ¢ generates Z;} under multiplication. In other
words, Z} is cyclic in this case. A well-known result of number theory, which we
exploit in Section 5, states that Z} is cyclic if and only if b equals 2, 4, p” or 2 p”
for p an odd prime and » a positive integer. In any case, the powers of ¢ (mod b)
form a subgroup () of Z}.

In what follows we need to look at the subgroup (¢, —1) of Z} generated by ¢
and —1. If ¢ is basic, then —1 € (¢), so in this case (z, —1) = (¢} (hence our
choice of the term basic). If ¢ is nonbasic, then (¢, —1) contains all the elements of
(t) together with their negatives. Thus in either case (but for different reasons), we
obtain the following simple result.

PrOPOSITION 3. Let t and b be relatively prime integers, b > 2. Then
(x1, 212, £83,..., 219D is a set of representatives for (t, —1), and the cardinal-
ity of (t, —1) is 2q(t, b).

Returning to the terminology of Section 2, we see that the bracelet containing 1 is
exactly a collection of representatives for (2, —1). Furthermore, we can construct
bracelets for values of ¢ other than 2 simply by generalizing the definition of f, (and
that of g,), reducing all calculations modulo b. (Unfortunately, it no longer seems
to be easy to characterize the charms.)

DEFINITION. Let ¢ and b be relatively prime integers, » > 2. The function f,:
V(b) - V(b) and the function g,: D(b) — D(b) are given by the following rules:

tamodb ifa<b/2
f’(a)_{b—a ifa>b/2

and

(a) = ta mod b if ta mod b < b/2
884 =\ p_ tamodb iftamodb>b/2’

As in the case ¢t = 2, we let B(tz, b) be the number of bracelets formed in the
construction. Note that Proposition 1 remains valid. As an example, we have the
bracelet in FIGURE 7 for b = 17 and ¢ = 7; thus B(7,17) = 1 and ¢(7,17) = 8.

Again, our function f, (or g,) and the bracelet graph replace the “quasi-order
algorithm” and “symbol” of Hilton and Pedersen. Since all that is involved is
multiplication modulo b, we avoid the cumbersome calculations and bookkeeping
that they encounter when using the division-based approach when 7 > 2. On the
other hand, their symbol does immediately determine the quasi-order and a criterion
for whether ¢ is basic (mod b).
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F1G. 7. Bracelet (with domino structure) for b = 17, t = 7.

4. A little group theory sheds some light. In Section 3 we saw that the bracelet
containing 1 is just (a collection of representatives for) the subgroup (z, —1). In this
section we apply some rudimentary group theory to discover what the remaining
bracelets are, what the number of bracelets signifies, and how the domino structure
can be interpreted. To avoid the awkward construction in parentheses in the first
sentence of this paragraph, we will identify elements of Z}* with their representa-
tives and think of the bracelets as actually containing elements of Z .

THEOREM 1. The bracelets for a given b > 2 and t relatively prime to b are precisely
the cosets of (t,—1) in Zj. They all have weight 2q(t, b), and the number of
bracelets is given by

o(b)

Bl b) = 24(t,b)

= index of (t, —1)inZ}.

Proof. For each a € Z}, the bracelet containing a consists of all numbers
(mod b) of the form at’, i =1,2,... . Thus it consists of precisely
(tat, +at?, ..., +at?" Y}, which is the coset a(t, —1). The remaining statements
follow from Proposition 3 and the definitions.

We next turn to an analysis of the sizes of the bracelets, i.e., the number of
vertices in each bracelet which are not charms. We saw in FIGURE 5 that the sizes
need not all be the same for a given b and ¢. On the other hand, the following
theorem allows us to calculate their parity.

THEOREM 2. The sizes of all the bracelets for a given b > 2 and t relatively prime to
b have the same parity. This parity is even if t is basic (modb) and q(t, b) is odd, or if
t is nonbasic (modb) and q(t, b) is even; and otherwise this parity is odd.



1988] NUMBER-THEORETIC PROBLEMS 297

Proof. Each step in a traversal of the cycle of a bracelet (i.e., the vertices which
are not charms) corresponds either to multiplication by ¢ (with a move to the next
domino) or to multiplication by —1 (staying within the same domino). If s is the
size of the bracelet, then after s steps (and not before), we will have returned to the
starting point. If we performed k multiplications by ¢ and s — k multiplications by
—1, then we must have (mod b)

at*(-1)’*=a

or simply

th=(=1)"""%

Therefore, k must be g(z, b) and (—1)° ¥ must be —1 or 1 according as whether
¢ is basic or nonbasic (mod b), independent of the particular bracelet, i.e., indepen-
dent of s. Thus the parity of s — k, and, hence, of s, depends only on b and ¢, in
the manner stated. (It is also possible to give a proof based on a generalization of
Gauss’s Lemma due to Emma Lehmer [11].)

Since the size of a bracelet plus the number of its charms is even by Proposition
1, a statement similar to Theorem 2 holds as well for the number of charms.

Finally, we note that D(b) can be viewed as a collection of representatives for
the factor group Z; /{ — 1), which is essentially just the set of dominoes.

5. Some more number theory sheds some more light. In Section 4 we reduced
questions about the sizes, weights, and numbers of bracelets to questions about
q(t, b) and about 19“® mod b, i.e., whether ¢ is basic or nonbasic (mod b). We
now continue this study by classifying the bracelet structure into one of eight types,
defined in terms of the sign of #9“® mod b, the parity of ¢(t, b), and the parity of
B(t, b). The following table shows the types, together with the smallest example in
which 7= 2 and b is prime (the dashes in the last column indicate that—as
Theorem 3 will state—these types are impossible for prime b).

TABLE 1. TYPES OF BRACELET STRUCTURES.

Type 1. t basic q(t, b) odd B(t, b) odd (b=3)
Type 2. t nonbasic q(t, b) odd B(t, b) odd (b=17
Type 3. t basic q(t, b) even B(t, b) odd (b=75)
Type 4. t nonbasic q(t, b) even B(t, b) odd —
Type 5a. t basic q(t, b) odd B(t, b) even (b =281)
Type 5b. ¢t nonbasic q(t, b) odd B(t, b) even (b=173)
Type 5c. t basic q(t, b) even B(t, b) even (b=17)
Type 5d. ¢ nonbasic q(t, b) even B(t, b) even —

By using quadratic residues and the fact that Z} is cyclic for certain values of b
(including all odd prime numbers), we will now determine, for such values of b,
when each of these cases occurs. Recall that an integer x is a quadratic residue
mod b if x = y? (mod b) for some integer y.
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THEOREM 3. Suppose that L} is cyclic, b #+ 2,4 (i.e., b = p" or 2p", for p an odd
prime and n a positive integer), and suppose that (t, b) = 1. Then

n—1 -1
B(b) = (r-1)
2q(z, b)
Furthermore,
a) if neither t nor —1 are quadratic residues modb, then q(t, b) is odd, t7"? = —1

(modb), {(t) = (t,—1) + { — t), and B(t, b) is odd (Type 1);

b) if t is a quadratic residue modb but —1 is not, then q(t, b) is odd, t9¢? =1
(modb), {t) # (t,—1) = { — t), and B(¢, b) is odd (Type 2);

) if —1 is a quadratic residue modb but t is not, then q(t, b) is even, t1? = —1
(modb), (t) =(t,—1) = ( —t), and B(t, b) is odd (Type 3);

d) if both t and —1 are quadratic residues modb, then B(t, b) is even (Type 5); if
Type S5a occurs, then (t) = (t,—1) #+ { —t); if Type 5b occurs, then (t) +
(t,—=1) = ( — t); and if Type 5c occurs, then (t) = (t,—1) = ( — t);

e) Type 4 and Type 5d cannot occur.

Proof. Since b = p" or 2p”, it is easy to compute the order of Z;, namely
o(b) = p"~!(p — 1). Thus the displayed equation follows from Theorem 1.
a) Let the integer g be a generator of Z}, and write ¢t = g” (mod b). Since ¢ is
assumed not to be a quadratic residue mod b, r must be odd. Thus ¢#(*/2 = (—1)"
= —1 (mod b). We claim that, therefore, ¢(¢,b), which must be a divisor of
#(b) /2 by Proposition 2, is odd. Indeed, since — 1, which is congruent to g2, is
assumed not to be a quadratic residue mod b, it must be that ¢(b)/2 is odd. It
follows, then, that t9¢~® = —1 (mod b), i.e., ¢ is basic. Combining all this we see
that B(t, b) is odd. Finally, since ¢ is basic, it is clear that ¢ generates (¢, —1); on
the other hand, since g(¢,b) is odd, (—¢)9"® =1 (mod b), so —¢ does not
generate (t, —1).
b) The proof is similar to part (a), except that we use —¢ in place of ¢. This works
because, given that ¢ is a quadratic residue and —1 is not, —¢ is not a quadratic
residue.
¢) The proof is similar to part (a), except that since ¢(b)/2 is even (by the
assumption that —1 is a quadratic residue), ¢(¢, b) must absorb all the factors of 2
in ¢(b)/2 in order for 1%(*¥/2 to be congruent to —1. Thus ¢(¢, b) is even, and,
again, B(¢, b) is odd. Since ¢ is basic, (¢) = (¢, —1); and since, in addition, ¢(z, b)
is even, ( — t) = (t, —1), as well.
d) If ¢(t¢, b) is odd, then since ¢(b)/2 is even, B(t, b) is even, and the other
statements follow as above. If g(z, b) is even, then ¢9% = —1 (mod b), since
otherwise 79(~?/2 would also be congruent to +1 (mod b), contradicting the
definition of ¢(z, b). (This last statement uses the fact that the number 1 has exactly
two square roots in Z} [14, p. 247].) Thus the order of ¢ is 2¢(¢, b). It follows that
(t) = (t,=1) = ( — t). Now since ¢ is a quadratic residue, #*"/? =1 (mod b).
Therefore 2¢(t, b) divides ¢(b)/2, and so 2 divides ¢(b)/(24(¢, b)) = B(, b).
e) If g(z, b) were even and 79¢-® = 1 (mod b), then 19?2 = +1 (mod b), as in
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the proof of (d). This contradicts the definition of g(¢, b), so Type 4 and Type 5d
cannot occur. (We will see later that they can occur when Z} is not cyclic.)

We note the following corollary of Theorems 2 and 3.

COROLLARY 1. Suppose that L} is cyclic, b + 2,4 (i.e., b= p" or 2p", for p an
odd prime and n a positive integer), and suppose that (t, b) = 1. Then there are an
even number of bracelets if and only if both t and —1 are quadratic residues modb.
Furthermore, the sizes of the bracelets are even if neither t nor —1 are quadratic
residues, and odd if exactly one of t and —1 is a quadratic residue (the sizes may be
either even or odd if both are quadratic residues).

The determination of the quadratic residue status of 2 and —1 mod b is always
very simple in the cases we are considering. The following proposition is a standard
exercise in number theory (see [14, pp. 254 and 256] for the flavor of the arguments
involved).

PROPOSITION 4. If Z} is cyclic, b # 2 or 4, then —1 is a quadratic residue mod b
if and only if b=1 or 2 (mod4). If b =p" for p an odd prime and n a positive
integer, then 2 is a quadratic residue modb if and only if p = 1 or 7 (mod 8).

Combining Proposition 4 with Theorem 3, we see that, for t = 2 and b prime,
types 1, 2, 3, and 5 occur when b is congruent to 3, 7, 5, and 1 (mod 8), respectively.
Since by Dirichlet’s Theorem [14, p. 375] there are an infinite number of primes in
each of these congruence classes, we see that each of these types occurs infinitely
often. In particular, for t = 2 there are at least two bracelets for infinitely many values
of b. In case t is some number other than 2, results similar to Proposition 4 can be
obtained using the Law of Quadratic Reciprocity, and again we will have an infinite
number of occurrences of each of types 1, 2, 3, and 5. We leave it as an exercise to
show that the residue class of b mod 12 determines the type when b is prime and
t=3.

Two obvious questions about the number of bracelets arise when one looks at the
data in the Appendix: is there only one bracelet infinitely often, and can there be an
arbitrarily large number of bracelets? In the remainder of this section, we will
consider these questions for prime b.

The answer to both questions is an easy “yes” if we are willing to think of B as a
function with two arguments, rather than thinking of ¢ as a fixed parameter.

THEOREM 4. For infinitely many pairs (t, b) with b prime, B(t,b)=1. As a
function of two variables, B(t, b) is unbounded, even with b restricted to being prime.

Proof. For the first claim, we need only observe that for prime b, we can choose
the integer 7 to be a generator of the cyclic group Z . For the second, we can make the
number of bracelets arbitrarily large simply by taking ¢ to be b — 1, since then the
quasi-order of ¢ will be 1, and so the number of bracelets will be (b — 1)/2 by
Theorem 1.
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The questions become much harder if we fix ¢ (still insisting that b be prime). By
Theorem 3, B(2,b) =1 if and only if the integer 2 (or in some cases —2) is a
generator of Z}*. Number theorists call 2 (or —2) a primitive root in this case. It is
conjectured, but not known, that 2 is a primitive root for infinitely many primes. If
this conjecture were true (in a somewhat stronger form, since we would need to
restrict ourselves to Type 1 or Type 3), then we could conclude that there is only
one bracelet infinitely often. Similar statements could be made for other values of .

Another long-standing conjecture is that there are an infinite number of primes p
for which b = 2p + 1 is also prime [15, p. 129]. If p and b are such primes, then it
is easy to show that ¢(¢, b) = p, and therefore that B(¢, b) =1, for all ¢ not
congruent to +1 (mod b). In particular, if the conjecture is true, then for each ¢ > 1
we would have B(t, b) = 1 infinitely often.

At the other end of the spectrum, B(t, b) is large when ¢(¢, b) is small compared
to b. The smallest g(¢, b) occurs when 9% = p + 1, i.e, when b = t9("?) + 1 or
b = 9% — 1, (There is currently a great deal of interest in the prime factorization
of t*+ 1 for small ¢ and large k; see [1].) In the particular case of ¢ = 2, the
questions of whether 2% + 1 are prime are well known. Prime numbers of the form
2k + 1 are the Fermat primes, and only five of them are known: 3, 5, 17, 257, and
65537. Thus, for example, B(2,65537) = 65536,/32 = 2048. Prime numbers of the
form 2% — 1 are the Mersenne primes, and only about 30 are known. (The largest
Mersenne prime currently known is 22169°! — 1.) Thus, for example, there are 315
bracelets when b is the Mersenne prime 8191. It is not known whether there are an
infinite number of Fermat or Mersenne primes. If there are, then clearly B(2, b) is
unbounded for prime b. We can still derive this conclusion, however, by looking at
the prime factors of the Fermat numbers.

THEOREM 5. Let t be a fixed integer greater than 1. Then B(t, b) is unbounded for
prime numbers b.

Proof. We use the following well-known lemma (whose proof is not hard—see
[15, p. 343], for example): If p is an odd prime divisor of t*' + 1, then p = 2"l + 1
for some positive integer i. Now for any positive integer M we can guarantee that
2"+l + 1 is not prime for 1 < i < M by taking n = [TM ¢(2i + 1). Indeed, since
2#@+D = 1 (mod 2i + 1), we have 2" =1 (mod 2i + 1), and, therefore, 2" "% + 1
=2i4+1=0 (mod2i + 1). Thus we can take b to be an odd prime divisor of
t¥" + 1, which must exist since even if #* + 1 is not odd, it is congruent to 2
(mod 4). By the lemma and the choice of n, we know that b = 2"*1 + 1 for some
i > M. On the other hand, the quasi-order of ¢ is at most 2", since t?' = —1
(mod b), so by Theorem 3, B(t, b) is at least (b — 1)/2"*1 =i > M.

6. Powers of primes. In the last section we looked at the quasi-order ¢(¢, b) and
the number of bracelets B(z, b), especially for odd prime b. We now make some
further progress in the case in which b is a prime power. Of course Theorem 3
applies in the case of powers of odd primes. Here we want to relate ¢(¢, b) to
q(t, p) and B(t, b) to B(t, p) when b = p” where p is an odd prime, and also to
compute ¢(z, b) and B(t, b) when b = 2",
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We first state without proof a fundamental result relating the order of ¢ mod b to
the order of # mod pb [12, p. 364]. We need to assume at least that ¢ # + 1 here, but
for simplicity we will assume that ¢ > 1.

PROPOSITION 5. Let b = p" and b’ = p"**, where p is an odd prime and n > 1.
Assume t > 1 and (t, b) = 1. Then o(t, b") is equal to either o(t, b) or po(t, b), and
the second possibility holds precisely on the set of all n > N(t, p) for some N(t, p) > 1
depending on t and p.

In other words, as n increases, the order of  mod p” eventually increases by the
same factor as p” increases, i.e., eventually ¢(b)/o(t, b) becomes constant as n
increases. In fact, it seems to be only rarely that ¢(b)/o(t, b) increases at all, even
as b goes from p to p2 Primes p for which this does occur seem not to have been
given a name in the number theory literature, so we will call them Wieferich primes,
after an early twentieth-century mathematician who studied them in connection
with Fermat’s Last Theorem [16].

DEFINITION. A prime p is called Wieferich with respect to ¢ if the order of
t mod p? is the same as the order of ¢ mod p.

The only Wieferich primes with respect to ¢ = 2, less than 31 million, are 1093
and 3511 ([8] gives the complete—and very small—table of primes known (in 1965)
to be Wieferich with respect to prime ¢ < 43).

We now show that the behavior of the order of : mod p” as n increases extends
also to the behavior of the quasi-order, and hence that the number of bracelets for
b = p" becomes constant for large enough n.

THEOREM 6. Let b =p" and b’ = p"*', where p is an odd prime and n > 1.
Assume t > 1 and (t,b) = 1. Then

q(t, b") _ o(t,b") _ {1 ifn < N(t, p)
q(t,b)  o(t,b) |\p ifn>N(t,p)’

where N(t, p) is the number guaranteed by Proposition 5.

Proof. The final equality follows from Proposition 5. As for the first, because of
the remark above Proposition 2, there are two cases to consider.

i) Suppose ¢(t, b) = o(t, b) = k, so t* =1 (mod b). Hence k must be odd (other-
wise */2 = 41 (mod b), as in the proof of Theorem 3.d). By Proposition 5, o(¢, b’)
is also odd. Therefore, since g(¢, b’) cannot be o(¢, b”)/2, it must equal o(z, b’),
and the desired equality follows.

i1) Suppose q(¢, b) = o(t, b)/2 = k. Thus o(t, b) = 2k, and so o(¢, b’) is also even
by Proposition 5. Therefore by the same reasoning as in (i), g(¢, b’) must be
o(t, b’)/2 and not o(¢, b"), and the desired equality follows.

COROLLARY 2. Let p be an odd prime and t > 1 a number not divisible by p. If p is
not Wieferich with respect to t, then

B(t, p") = B(t, p).
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In any case,

B(t, pn) =pmin(n,N(t,p))—lB(t’ P),
where N(t, p) is the number guaranteed by Proposition 5.

In other words, the number of bracelets for a prime power is eventually (and
nearly always, it seems) independent of the power.

We now turn briefly to the case b = 2", with n > 2. Thus Z}* is not cyclic (unless
b = 4), but it turns out [14, p. 205] that Z*/( — 1) is. In contrast to Theorem 3,
here usually neither ¢ nor —¢ generates the bracelet containing 1 (i.e., the subgroup
(t, —1)). We summarize what happens in this case but omit the proof. In terms of
the classification given in TABLE 1, all types are possible here except Type 3 and
Type 5c; almost always it is Type 4 or Type 5d.

THEOREM 7. Let b = 2", n > 2, and let t be an odd integer. Then

t+1 b
B(t,b) = (-4—,2),

where the sign is chosen so that (t + 1)/4 is an integer. Also,

n—2
t,b) = .
q(t, b) B0 D)
Furthermore, t is nonbasic mod b unless t = —1 (modb).

7. The general composite case. We look finally at what can be said about ¢(z, b)
and B(t, b) for b composite.

For simplicity, we will carry out the analysis in the case b = p, p,, where p, and
P, are distinct odd primes, but the argument will generalize to yield Theorems 8 and 9
below. Let (¢z,6) =1, and let r, and r, be the quasi-orders of ¢ mod p, and
mod p,, respectively. We will need to compare the highest powers of 2 dividing 7,
and r,, so we write r; = 2%1r{ and r, = 2*2r, where r{ and r; are odd. Our goal is
to determine ¢(¢, b) and B(¢, b) in terms of ¢(¢, p;) and B(t, p,), i = 1,2.

We first recall what is essentially the uniqueness part of the Chinese Remainder
Theorem.

PROPOSITION 6. If a = b (modm;) fori=1,2,...,n, and if the m; are pairwise
relatively prime, then a = b (modmm, - -- m,).

Since %" = 1 (mod p;), clearly %) = 1 (mod p,). Hence ¢2">"2) = 1 (mod b)
by Proposition 6. Therefore, (¢, b) is a divisor of 2[r, r,]. On the other hand, since
195 = 11 (mod b), we have 19 = +1 (mod p,) for i = 1,2. Thus by Proposi-
tion 2, g(t, b) is a multiple of both r; and r, and hence of their least common
multiple. Combining these two statements, we see that either ¢(¢, b) = [r,, r,] or
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q(t, b) = 2[ry, r,]. To determine which formula applies, we need to look at the four
cases.

Case 1. t" =1 (mod p,) for i = 1,2. Then ¢!":") = 1 (mod b) by Proposition 6,
SO q(t7 b) = [rl’ r2]'

Case 2. t""= —1 (mod p,) for i = 1,2. If r; and r, have the same highest power
of 2 as a factor, i.e., x; = x, in the notation established above, then [ry, ,]/7; is
odd, so ¢l = —1 (mod p,), for i = 1,2. Thus """} = —1 (mod b) by Proposi-
tion 6, and hence ¢q(¢, b) = [ry, 1,]. If, however, x; # x,, then one of [, r,]/r; and
[y, 1,1/, is even and the other is odd, so ¢[""2] has different values reduced
modulo p, and modulo p,. Therefore ¢! "2} cannot be congruent to either 1 or —1
(mod b). 1t follows that ¢(¢, b) = 2[ry, r,] in this subcase.

Case 3. t" = —1 (mod p,) and ¢"2 =1 (mod p,). Using the same reasoning as
in Case 2, we see that g(¢, b) = [ry, r,] if x; < x, and q(¢, b) = 2[ry, 1] if x; > x,.

Case 4. t" =1 (mod p,) and ¢”2 = —1 (mod p,). The situation is similar to
Case 3.

As a corollary of this analysis, we see that, except for a factor of (r, r,) and a
possible factor of 2, the “number of bracelets” function is multiplicative. Indeed,
since B(t, b) = ¢(b)/(2q(t, b)), we see that if g(z, b) = [ry, 1,], then

o(b) _ (pr—D(p— 1)
2[r, r] 2nry/ (1, 12)

B(t,b)= =2(r1’r2)B(t’ pl)B(t’P2)=

and if q(¢, b) = 2[r,, 1,], then

o(b) (pr—D(p,— 1)

B(x.b) = 4[”1a’2] - 4"1”2/(”1»”2)

= (ry, 1) B(t, p1) B(t, py)-

As one example, let t =2, p, =5, and p,=7.Then r, =2, r,=3, t"= -1
(mod p,), and ¢"> = 1 (mod p,). Case 3 applies, with x; > x,, so ¢(2,35) = 2[2, 3]
=12, and B(2,35) = B(2,5)B(2,7) = 1. For another example, suppose = 2,
p, =3, and p, = 11. Then we are in Case 2 with 2! = —1 (mod3) and 2° = —1
(mod 11), so ¢(2,33) = [1,5] = 5 and hence B(2,33) = 2B(2,3)B(2,11) = 2.

Nothing in the foregoing discussion except the calculations of B(¢, b) required
that p, and p, were odd primes, only that each was greater than 2 and ( p,, p,) = 1.
Thus, generalizing in a straightforward way to arbitrary b, we obtain the following
theorems, which give formulas for computing quasi-orders and numbers of bracelets
for composite numbers in terms of these invariants for their prime-power factors.
(In Corollary 3 we see that the number of bracelets ultimately does not even depend
on the powers.) All eight types (see TABLE 1) are possible. We leave verification of
the details to the reader.

THEOREM 8. Let b =T1",pf, where the p, are distinct primes dividing b and
b # 2 (mod 4); or let b = 2[17_| pf:, where the p, are distinct odd primes dividing b.
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Suppose t > 1 and (t, b) = 1. Let r, be the quasi-order of t modp{, and for each i
write v, = 2%/, where r/ is odd. Then

a) if t is nonbasic (modp;+) for all i, then t is nonbasic (modb), and q(t, b) =

(7, Fasee s 15
b) if t is basic (modp{) for all i, then
i) ifx; =x,= -+ =X, then tis basic (modb) and q(t, b) = [r, 1, ..., 1],
and
ii) otherwise, t is nonbasic (modb) and q(t, b) = 2[r;, ry,..., 1,];

¢) if tis basic (modp;+) for some i, and t is nonbasic (modp}:) for some j, then t is
nonbasic (modb), and

1) if max(xy, X5,...,%,) = X, for some i for which t is basic (mod p;+), then
q(t,b) =2[r, ry,...,1,), and
ii) if max(xy, x,,..., x,) > x, for every i for which t is basic (modpf+), then

q(t,b) =[r,ry,..., 1)

THEOREM 9. Let b =TI, p, where the p, are distinct primes dividing b and
b # 2 (mod 4); or let b = 211!, p{, where the p, are distinct odd primes dividing b.
Suppose t > 1 and (t, b) = 1. Let r; be the quasi-order of t modpf:. Then

r1r2 “ee rn

B(1,b) =271~
(t, ) [, 73seves ]

2. B(1, pft),

where ¢ is either 0 or 1, depending on which of the cases in Theorem 8 applies: ¢ = 0
in cases (a), (b.i), and (c.ii), and € = 1 in the cases (b.ii) and (c.i).

Note that Theorem 9 also provides a simpler proof that B(¢, b) is unbounded as
a function of (not necessarily prime) b, since we need only take n large to make
B(t,b) large.

Finally suppose b = I1"_; p{, where the p, are distinct primes dividing b, with
t > 1 and (¢, b) = 1. If the exponents e; are large enough, then it is not hard to
show by Theorems 5 and 6 and Corollary 2 that all the terms on the right-hand side
of the displayed equation in Theorem 9 are independent of the exponents. Thus we
have the following Corollary—which we find most remarkable—that the number of
bracelets for b is independent of the exponents in the prime factorization of b once the
exponents get large enough.

COROLLARY 3. Let py, py,.-., D, be distinct primes, none of which divides t > 1.
Then there exist constants E,, E,, ..., E, and C (depending on p,, p,,..., p, and t)
such that if b =T1!_, p{* withe, > E; fori=1,2,...,n, then B(t, b) = C.

As a comprehensive example, let us study b = 720, ¢ = 7. Since 720 factors as
24325, we first apply Theorem 7 to obtain B(7,16) = 2, ¢(7,16) = 2, and 7> =1
(mod 16). Then we apply Corollary 2 (since 3 is not Wieferich with respect to 7) to
obtain B(7,9) = B(7,3) = B(1,3) =1 and ¢(7,9) = ¢$(9)/2 = 3; and we apply
Theorem 3b (or calculate directly) to obtain 7° = 1 (mod9). Finally we compute
that B(7,5) = B(2,5) =1, ¢(7,5) = q¢(2,5) = 2, and 7> = —1 (mod 5). If we com-
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bine all of these by Theorem 8.c.i, then we get ¢(7,720) = 2[2,3,2] = 12 and
72 = 1 (mod 720); and applying Theorem 9, we see that B(7,720) = 23112 -3 -
2/12,3,2]) - 2-1-1 = 8. On the other hand, to see the force of Corollary 3, we
have that if e; > 5, e, > 1, and e, > 2, then B(7,293¢5¢) = 80, since Theorem
8.c.ii applies and 5 is Wieferich with respect to 7 (N(in fact7,5) = 2).

Added in proof: We note that Theorem 8 answers a question raised by Man
Keung Siu [17], who obtained for the case ¢ = 2 a sharpening of a part of Theo-
rem 3.

8. Afterword. We leave the reader with a comment, a generalization, and an
open question.

In some sense our investigation (except for Section 7 and the end of Section 6)
has focused on a structure which is extremely well understood: the cyclic group.
Nevertheless, interesting questions emerged, and the progress was somewhat im-
peded by famous unsolved problems in elementary number theory, such as whether
2 is a primitive root for infinitely many primes. We found it fascinating that this
problem touched so many corners of elementary number theory. It could serve as a
fruitful area of “research” for an undergraduate following an introductory number
theory course.

The quasi-order of 1 mod b was defined to be the least positive integer k such
that ¢* represents an element of the subgroup {—1,1} of Z}. More generally, for
other subgroups S of Z}, we could define the quasiorder of ¢+ mod b relative to S.
Does anything interesting emerge?

Looking at the Appendix, we note that the sizes of the bracelets for a given b
tend to be roughly equal, and that the bracelet containing 1 is usually the bracelet
with the smallest size. Are any theorems lurking here?

Appendix: Some data. Listed here are the number of bracelets and the weights
and sizes of the bracelets, for t =2, b odd, 3 < b < 99. The size of the bracelet
containing 1 is marked with * when there is more than one bracelet.

b B(2,b) weights sizes
3 1 2 2
5 1 4 3
7 1 6 5
9 1 6 4
11 1 10 8
13 1 12 9
15 1 8 6
17 2 8,8 5*%,7
19 1 18 14
21 1 12 8
23 1 22 17
25 1 20 15
27 1 18 14
29 1 28 21
31 3 10,10,10 7*,7,9
33 2 10,10 6*,8
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b B(2,b) weights sizes
35 1 24 18
37 1 36 27
39 1 24 18
41 2 20,20 13%,17
43 3 14,14,14 10%,10,12
45 1 24 18
47 1 46 35
49 1 42 31
51 2 16,16 12%,12
53 1 52 39
55 1 40 30
57 2 18,18 12%,14
59 1 58 44
61 1 60 45
63 3 12,12,12 8%,10,10
65 4 12,12,12,12 7%,9,9,11
67 1 66 51
69 1 44 32
71 1 70 53
73 4 18,18,18,18 11%,13,15,15
75 1 40 30
77 1 60 44
79 1 78 55
81 1 54 40
83 1 82 62
85 4 16,16,16,16 10%,12,12,14
87 1 56 42
89 4 22,22,22,22 15%,15,17,19
91 3 24,24,24 16,18*,20
93 3 20,20,20 14%,14,16
95 1 72 54
97 2 48,48 35%,37
99 2 30,30 22,24*
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Integrals, an Introduction to Analytic Number Theory

ILAN VARDI, Stanford University

ILAN VARDI: I got my Ph.D. in Number Theory from M.LT. in 1982, as a
student of Dorian Goldfeld. I then spent a year at the Institute for Advanced
Study. I was an acting assistant professor at Stanford from 1983 to 1985.
After realizing that not everybody cared about Kloosterman Sums, I learned
how to use a computer and tried out some applied math. I'm now interested
in special functions related to determinants of Laplacians.

1. Introduction. An examination of Gradzhteyn and Ryzhyk’s book of integral
tables reveals a large number of difficult and obscure integral formulas. In my
opinion one of the most remarkable is given on p. 532

i
T

I'(s) = fooe_‘ts‘l dt s>0
0 b

T T
f /zloglogtan xdx = —log V2w |, (1)
4

7/ 2

where

is the classical I'-function. The reference given is to Bierens de Haan [2]. Failing to
locate the proof of this formula, I decided to study equation (1) in some depth. It
turns out that this formula requires some fairly involved analysis to prove, and also
serves as a good example of how nontrivial number theory can be embedded in an
integral formula.
The key to equation (1) is the Dirichlet L-function
I ) 1 1 1
(s) 35 SS 7S
This is a well-known function; for example every calculus student knows the
formula
L1 . 1 1 T
= _ — + — e = —
(1) 3 5 4
Also, by the alternating series test L(s) converges for 0 < s < 1. However, much
more is known and Hurwitz proved that L(s) can be analytically continued to an
entire function in the whole complex plane. He did this by proving the functional
equation

L(1—s)= (%)ssingr(s)L(s). @)

308
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What we will, in fact, show is that

™ d
f /2loglogtan xdx =—T(s)L(s) (3)
/4 ds -1

Invoking the well-known formulas
r(1) =1
'@ = -v

where y is Euler’s constant,

1 1 1
y = lim {(1 + -+ -+t = logn} = .577215664901532860606512... .,
n

n—>c0 2 3

equation (3) becomes

/2 7 ,
f loglogtan xdx = —y— + L’(1).
/4 4

So the proof of equation (1) will consist of 2 parts: a) establishing (3) b)

expressing L’(1) in terms of logarithms of I'-functions.

2. Proof of equation (3). We begin with a general Dirichlet series

Fs) - 3

n=1

nt

which, if f is of polynomial growth, will converge absolutely in a half-plane
Re(s) > ¢. We now use the technique first developed by Riemann to study the
Riemann {-function

r(s) =f

© -1 - s—1
e 't* dt=f e "(nt)" “d(nt),
0 0

SO

(s
(s) = fooe*”’t“ldz.
0

Hence, by absolute convergence, one gets that for Re(s) > ¢

f(’:) = if(n)fwe"’t“ldt

n

[(s)F(s) =T(s)

i DM18

1 B

= foo( Zf(n)e_"’)fIdl.
0 n=1
Now let z = e7/, this gives

z

r6)#(6) = [ £ s i) %

=1 z

X
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Now we add the restriction that f(n) be a periodic function. That is, there is a
positive integer g such that f(n + ¢) = f(n) for all n (for technical reasons also
assume that f(q) = 0). With these assumptions we have that for |z| < 1

£ st £ E fmg s myzme

g—1
L f(m)2

_P(a))

1—-29  1-—29°

where
g—1
P(z,f)= X f(n)z
n=1

We have thus obtained the formula:

P(z,f)(logl)ﬁ1 s
F(s)r(s)=f01 L (4)

1—2z7 z

This formula was first obtained by Dirichlet (see [3]) to derive his class number
formula of which L(1) = w/4 is the simplest case. Differentiating equation (4) by
Leibniz’s rule gives

1 s—1
log—
d 1 ( Z) 1)\ dz
— = ————loglog| — | —.
SEOT() = ['P(e )" toglog| £ |
Now if F(s) converges absolutely at s = 1 this will yield
1 1\dz
F(0) = vF(1) = ['P(z, foglog| 7| 5 )
0 z) z

To prove equation (1) we let g = 4 and pick f(n) to be the quadratic character
(mod 4) that is

0 if n=0(mod4)

1 ifn=1(mod4)

0 ifn=2(mod4)’
-1 if n =3 (mod4)

Xa(n) =

X 4 1s called the quadratic character (mod 4) because for (n,4) = 1

xa(n) = { 1 if3x s.t. x*=n (mod4)
—1 otherwise,

while x,(rn) = 0if (n, q) > 1.
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So we have
P(z,x)=z-23

and equation (5) becomes

1
(z— z3)loglog d

T
L'(1) —y—=
(1) Y4 f 1-2z*4 z
0 du

1

fologlog( ) =/1 loglogu1 T

= f W/zloglogtan xdx.
w/4

3. Evaluating L’(1). It turns out that it is much easier, first, to evaluate L’(0),
then use the functional equation L(s) — L(1 — s) to obtain the value for L’(1).
To compute L’(0) we follow a method due to André Weil [7]. Let
S 1
f(s’a)‘_‘z——?, 0<acx<l,
n=1 (n + a)

be the Hurwitz {-function. It is easily shown to converge for Re(s) > 1. Using the
integral formula [8]

—at

M)(as) = [“1—

one can show that {(a, s) can be analytically continued to the whole complex plane
with only a simple pole at s = 1. The relevance of {(a, s) is due to the formula

S I

thus evaluating {’(0, a) will yield the value of L’(0) (for ease of notation we have

7 dt

written {’(s, a) to denote 7 {(s, a)). Weil’s observation is the following: note that
s
for s > 1

1
(ssa+1) = X(s,0) - =,

thus
$'(s,a+1)=¢(s,a) +a*loga,
and at s =0
£(0,a+1) =¢(0,a) + loga.
Letting

G(a) = eg,(oy”)’
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we see that G(a) satisfies the functional equation
G(a+1)=aG(a).

Further, one has that

2 ©
—logG(a) = Y, >0, fora>0,

n

da* (n+a)2

and that

G(a) is analytic for a > 0.

These however are the exact conditions for the Bohr-Mollerup Theorem for the
uniqueness of the Gamma function [1]. Thus one has that

G(a) = G(1)I'(a).

One sees that G(1) = {’(0,1), and on noting that {(s,1) = {(s), where {(s) is the
Riemann ¢{-function, one has

G(1) = £(0).
It is well known that {’(0) = —(1/2)log27 (e.g., [6], [8]), and so
I'(a)

$(0, a) =10g‘5‘/—7~

Substituting this in the formula for L(s) one derives
1

ik
3

(3

By the functional equation and L(1) = #/4 one gets that

L'(0) = log — L(0)log4.

L(0) = -
And once again by the functional equation
3
24 o)L 1141F(Z)+117’
—_—— o p— + —_ p—
LGOI = loe °gr(l) log 2,
4

and thus

ik
ib

K K
L’(l) = 75 + Elog \/2_77

This concludes the proof of equation (1).
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4. More formulas! There are actually quite a number of identities in Gradzhteyn
and Ryzhyk similar to (1). For example, there are

1 1 dx 7 3 13
loglog| — | ————— = —log| —=L(2 571 6
'éogog(x)lﬂﬂz 75 log F(l)(w) , page (6)
3

111(1) dx 277512 lTl 5
A oglog| T ¢ log2m — log (g), page 572.  (7)

One sees that in equation (6) 3 plays the “key role” and in equation (7) 6 is the
“magic number.” To explain this one introduces Dirichlet characters (mod q)

x is a Dirichlet character (mod ¢ ) if

x(1) =1
x(n+q)=x(n) Vn
x(n) =0 if (n,q) >1

x(mn) =x(m)x(n) VYm,n.

The corresponding Dirichlet L-function is

x(n)

n 5

Lis, x) = i . Re(s) >0

and can be continued to an entire function if x is not the trivial character
Xo(n)=1 if(n,q) =1

Now the analogous character to x, in equation (6) is the quadratic character
(mod 3)

0 ifn=0(mod3)
x;(n) =< 1 ifn=1(mod3)
-1 if n =2 (mod3),

and in equation (7) the corresponding character is the quadratic character (mod 6)
X¢(n). Hence we have the L-functions

1 1 1
L(S,x3)=1—‘2‘;+;—§§"-

1 1
Lisix) =1 3+ 2

55‘ 75
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The proofs of (6) and (7) are completely analogous to our proof of equation (1).
One can further explain how the numbers 3,4,6 play the key roles in our
formulas. First rewrite equation (1) in the same form as (6) and (7)

)
4l

Note that the solutions of x? + 1 are 4th roots of unity, i and —i, and one

explains why L(s, x,) is involved by noting that it can be shown from the Quadratic
Reciprocity Theorem that

1 1 dx T
fologlog(;) 1T 2 = Elog V27 |.

§Q(i)(s) = L(S’ X4)§(S)»

where {q,)(s) is the Dedekind zeta function of the field Q(i), and the classical
definition (e.g., [5]) of the Dedekind {-function of the number field X is

§ = PYIRYE
K(S) AEK N(A)
A ideal

Similarly, x>+ x + 1 is the irreducible polynomial for the 3rd roots of unity,

~1/2 +

, and, as above, L(s, x,) appears because

.{Q(,/—_3)(S) = L(s, X3)§(s)-

Similarly, x? — x + 1 gives the 6th roots of 1, so, as above, one expects L(s, x¢) to
play the central role.

5. Exercises.

1) Show that

e 0 logn
fllog(—loglogy)dy= — L e
n=1 :
Hint: consider
o 1
L =
f(s) ,E’l (n—1)n*

2) Find a similar formula for

f eelog( —logloglog y) dy.

e
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Dice with Fair Sums

Lewis C. ROBERTSON: B.S., M.S. (University of Chicago), Ph.D. (UCLA).

RAE MICHAEL SHORTT: I received a B.A. in mathematics at Amherst College
in 1978 and my doctorate at M.I.T. in 1982.

My interests include measure theory, probability, and descriptive set
theory.

STEPHEN G. LANDRY: I received my B.A. in mathematics from the University
of New Haven in 1984. Since then I have been a graduate student at
Wesleyan University.

Consider the following situation. We are given two n-sided dice with the numbers
1 through n on their sides. These dice have the property that when both are rolled
independently, the sum of the numbers showing behaves (as a random variable) as if
the two dice were each fair. Can we conclude that each die is in fact fair? It
surprised the authors to discover that the answer is sometimes no, depending on the
particular value of n being considered. What follows is an exposition of this
discovery.

Let X be a random variable. Suppose that X takes on only finitely many values
and that each of these values is a positive integer. Let n be the largest integer such
that P(X = n) > 0. We then call X an n-sided die. Define the polynomial p,(x) =

ro+ rx+ - +r,_;x""! where
P(X=k+1)
re=——— " fork=0,1,...,n— 1.
P(X =n)

We call p, the companion polynomial for the random variable X. It is easy to see
that a polynomial is the companion polynomial for some die if and only if it is
monic and has nonnegative coefficients. Then

r
P(X=k+1)= u fork=0,1,....,n— 1.
rotrg+ - +r,_,

What we have called a companion polynomial is simply a normalized version of the
generating function (see [1], Chapter 11). An n-sided die is fair if its companion is

316
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the cyclic polynomial
flx)=14x - +x" L.
LEMMA 1.1. Let X and Y be, respectively, n- and m-sided dice with companion

polynomials py and py. If X and Y are independent, then W = X + Y is an
(n + m)-sided die whose companion polynomial is p ,(x) = xp y(x)p y(x).

Proof. We put

px(x) =rg+rx+ o +r,_x"!

pY(x) =S + $1X +4 .. +Sm71xm—l
pr(X)py(x) =ty +t,x + - +1,,, ,x" M2
puw(x) =ug+ux + - du,,, x"mh

Then for k =0,1,...,n + m — 1,

P(W=k+1) iP(X=iandY=k+1—i)
u, = — =
K P(W=n+m) ! P(W=n+m)

" P(X=i) P(Y=k+1-1i)

=)

“P(X=n)  P(Y=m)

n n—1
= Z”,—lskﬂ: Z FSp—1-4-
=1 1=0

Note that because n and m are the greatest possible values of X and Y, respectively,
it follows that

PW=n+m)=P(X=nandY=m)=P(X=n)P(Y=m).

Above, we have examined all the ways in which X + Y can equal k + 1, and then
used the independence of X and Y. Multiplication of the polynomials p, and p,
yields

n—1

ey = 2 nSi
1=0

where we interpret the r, = 0 for i > nori <1and s, =0 for i > m or i < 1. The
equality ¢, _; = u, implies that

PW(X) = XPX(X)PY(X)-

Call a polynomial p(x) palindromic if its coefficients are the same when read
forwards and backwards. Equivalently, we may define a polynomial p of degree n
to be palindromic if p(x) = x"p(x~'). It is not hard to see that the product of two
palindromic polynomials is again palindromic.

If two random variables X and Y have the same distribution (or “law”), we write
L(X) = L(Y). Note that two dice have the same distribution if and only if they
have the same companion polynomial.
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The following result answers one half of our questions about dice whose sum is
fair.

THEOREM 1.2. Suppose that n € {1,2,...,9} U {11,13}. Let X and Y be indepen-
dent fair n-sided dice. Let U and V be independent dice, each of which has < n sides.
Suppose that L(U + V) = L(X + Y). Then U and V are fair n-sided dice.

Proof. This involves a certain amount of case-checking. For example, suppose
n=6.Let py, py, py, p, be the companion polynomials for X, Y, U, V, respec-
tively. The companion polynomial for X + Y and U + V is (by lemma 1.1)

xpy(x)py(x) = xpy(x)py(x) = x[f6(x)]2.

Now fo(x) = (1 + x)q,(x)g,(x), where g;(x) =1+ x + x? and gq,(x)=1—x
+ x? are irreducible quadratic polynomials. Considering the degrees of these
polynomials, we see that deg( p,) = deg(p,) = 5. Only two combinations of the
irreducible factors (1 + x), g,(x), g,(x) are possible:

pu(x) =py(x) = (1 +x)q,(x)g5(x) = fe(x)
or

pu(x) =1+ x)(qr(x)*  py(x) =1+ x)(gx(x))"

However, (1 + x)(g,(x))? has a couple of negative coefficients and hence cannot be
the companion polynomial of any random variable. We are left with the case
Pyu=Py=Px=Dy Then U and V are fair 6-sided dice.

A similar procedure must be carried out for each n. One writes

£(x) = {(1 + x)gqy(x) -+ q,(x) n even

q1(x) -+ g, (x) nodd
where
n—2
B 5 n even
"=V - ’
n odd
and ¢, --- g, are irreducible quadratic factors. One has 4,(x) =1—k,(p)x + x?,

where k,(p) = 2cos(2p w/n) for p =1,..., m. All of the real factorizations of
[ £,(x)]? into products of these irreducible factors must be calculated.

For each n, these cases were examined (for the presence of negative coefficients)
using a computer and MACSYMA, a large symbolic manipulation program devel-
oped at the M.I.T. Laboratory for Computer Science. In each case, it was de-
termined that only the “fair” factorizations of [f,(x)]? yielded polynomials with
nonnegative coefficients. A copy of the computer output is available upon request.

The theorem is no longer true if we relax the condition that U and ¥ have < n
sides. For example, suppose n = 6. Allowing the dice U and ¥ to have more than
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six spots on a given side, we may consider a factorization

[/ = pu(x) py(x) = [+ 1) g (0)] - [(1+ 1) g (x)(g2(x))]
=[1+2x+2x2+ X [1+ x>+ x>+ x*+ x° + x7],
which yields the following.

Example 1.3. Let U and V be independent random variables with distributions
given by

Event | v=1 | U=2 | U=3 | U=4 |
Probability | 1/6 | 2/6 | 2/6 | 1/6 |
Event | V=1]|V=2|V=3|V=4|V=5|V=6|V=T7|V=8|

Probability | 1,6 | 0 | 1/6 | 1/6 | 1/6 | 1/6 | 0 | 1/6 |

Then W = U + V behaves as if it were the sum of two fair dice.

Probability | 1/36 | 2/36 | 3/36 | 4/36 | 5/36 | 6/36 | 5/36 | 4/36 | 3/36 | 2/36 | 1/36

W. W. Funkenbusch pointed out to the authors that the dice U and V can be
physically realized by taking a pair of ordinary dice and changing the number of
spots on their sides.

U:[1]|2]213|3]4 Vil1|3(4(5]6]8

Of course, according to our definition of “n-sided die,” given above, the dice U and
V' here are “4-sided” and “8-sided,” respectively.

THEOREM 1.4. Let X, Y, U, V be n-sided dice. Suppose that X and Y are indepen-
dent fair dice and that L(U+ V)= L(X+ Y). Let p, and p, be the companion
polynomials for U and V. Then

1) p, and p, are palindromic.

2) If p,=py, then U and V are fair dice.

3) Suppose that the coefficients of p, and p, are all positive rational numbers.
Then U and V are fair dice.

Proof. 1) It follows from lemma 1.1 that p,(x)p,(x) = [f,(x)]*> Now the
complex roots of f, are the n — 1 roots of unity, excluding x = 1. We pair each root
with its complex conjugate and write

_ (x + 1) g (x) -+ g(x) n even
flx) = {ql(x) c g (x) n odd

where ¢, ..., q,, are irreducible quadratics of the form g(x) = (x — w)(x — w) =
1 + kx + x2 The irreducible factors of p,, and p, are thus all palindromic. So p,
and p, are palindromic.

{w=2|w=3|w=4|w=5!w=s|w=7|w=8|w=91w=1o|w=11[w=12
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2) In case py=p,, we see that p,(x)p,(x) = [py(x)]* = [f,(x)]? so that
(py = f,)(py + 1,) is the zero polynomial. It follows that p, = p, = f,, so that U
and V are fair dige.

3) The roots of p,(x) and p,(x) are algebraic integers. Gauss’ lemma [3;
Theorem 9.7] implies that the coefficients of p,, and p, are ordinary (“rational”)
integers. Put

Pu(x) =r+rx+rx?+ o 4, _x" 24y x"1
Pu(x) =so+sx +5,x2 4+ oo 45, ,x" 245 x"!
2 - —
[fn(x>] =15+ X + t2x2 + ... +t2n_3X2” 34 t2n_2x2n 2

Then 7, = min{k + 1,2n — 1 — k} = rys, + ris,_ + - -+ +r.5,. Now p,, and p,
are monic, and from part 1, palindromic. Sor,_, =1 =r,and s,_, = 1 = s5,. Then
1y =2 =rysy + riso =5, + rp. Since all the coefficients are assumed to be positive,
the only possibility is that 1 =5, =5, , and 1 = r, = r,_,. Then consider 7, = 3
=T1gS, + syt 1sqg=s,+1+r, forcing s,=5, ;=1and r,=r,_;=1. One
proceeds inductively to obtain ry=r = --- =, =s;=5,= -+ =5, =1,
Both U and V are fair dice.

In part 3 of theorem 1.4, the assumption of rationality for the coefficients cannot
be eliminated. In theorem 1.14 below, we exhibit independent, but unfair, n-sided
dice whose sum behaves as if the dice were fair.

One further note: the coefficients ry, r,,..., r,_, are all rational if and only if
Sgs S15+--» 8,_1 are all rational. This is because, when r,, rq,..., r,_, are known, the
coefficients s, s,...,5,_; may be obtained by solving the system of linear equa-
tions

roSi + s+ - +rsg=min{k+1,2n -1 - k)

using Cramer’s Rule. Since the matrix of coefficients and the min{k + 1,2n — 1 —
k} are rational, it follows that s,,..., s,_, are rational.

We now turn our attention to Chebyshev polynomials. They are a most useful
computational tool for handling the factorization of cyclic polynomials.

The Chebyshev polynomials S, S, S,, ... (actually, these are versions of what
are termed “Chebyshev polynomials of the first kind”) have many uses in mathe-
matical analysis, and there are many equivalent methods of defining them (see, e.g.
[2] or [4]). One way is to set Sy(x) =1 and S;(x) = x and use the recurrence
relation S, ,(x) = xS;(x) — S,_;(x). A matrix formulation is

[0 _1}"_[_&:—2()5) =S,_1(x)
1 x| | s,_,(x) S (x) |

We summarize the basic facts about Chebyshev polynomials that we shall need in

LeMMA 1.5. Let S, S, S,, . .. be the sequence of Chebyshev polynomials.
1) (x = 2L 4S,.(x) = S(x) =S y(x) =1 forj=1,2,....
2) (sin8)S;_1(2cos 8) = sin(jO) forj=1,2,....
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3) Let a and B be real numbers in [—1,1] such that neither 1 — az + z? nor
1 — Bz + z? vanishes for complex values z in the open disk |z| <1/2. Then for
lz| < 1/2

1—az+ 2?2

T- g1 =1+ (8- a)JE)Sj(,B)ZJ .

Proof. 1) Define the matrix

and consider the identity

[+ A+A+ 44" =(4~1) -1 (A" 1)

_ ! [1—x —1][—5,,~2(x)—1 5, 1(x)
x—2 1 1 Snfl(x) S,I(X)—l )

Inspection of the lower right-hand entry yields the desired result.

2) This well-known identity follows from the basic recurrence relation by a
simple induction argument.

3) Define a function of two variables

o(z,B) = iS,(B)zf-

Then

by the recurrence relation. So

[ee]

2(B—2)g(z,B) = Bz= L §.1(B)z/"" = g(z,8) =1~ Bz,

J=1
which leads to

1
22— Bz+ 1"

o(z,B) = §OS,<B>zf=

Now

1—az+ z? B (B—a)z

Tz Ao per 2 (BT e)slnh)
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so that
1—az+ 22

Tpr T

5(8)2*"

~.
reAs

as desired. It remains only to note that |S,(8)| < 2" whenever |B| < 1 (proof by
induction), so that the power series we have been manipulating so freely in fact
converges for |z| < 1/2. (The reader might want to press on and show convergence
for |z| < 1, which does hold.)

In view of theorem 1.2, it involves no loss of generality in considering n-sided
dice with fair sums where n > 10. With this restriction on »n, we introduce some
notation. Given n > 10, choose { p, ¢} € {1,2,..., m}, where p # ¢ and

n—1
2
n—2
2

if n is odd

m =

if n is even.

Define k,(p) = 2cos(2wp/n) and set

1-k,(p)x+ x?
1-k,(q)x+ xzf"(x)'

h,(p,q;x) =
Put
N, (p,q) = cos(2mq/n) — cos(2mp/n)
= 2sin(7(p + q)/n)sin(7(p = q)/n),
and define ¢, = ¢,(p, g, n) by

h(p,q;x) =co+cpx +cx*+ -+ +c

n—1
and d; =d (p, g, n) = ¢,(q, p, n), so that

h,(q,p;x)=dy+dx +dyx*+ - +d,_x""L
Define

(2pT
¢ (p) = Sln("n—

n

ij'n) _Sin(2(j+l)p77)

+ sin(

THEOREM 1.6. With notation as above, the following identities hold:

¢, =1+ }\,,(p,q)(l — cos(gz—w))_l%(q)(sin(z%))—z

2 2pm

d,=1+1,(q, p)(l - cos(—i—”))_lqu(p)(sin(_n_))-l
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Proof. Since 1 — k,(p)z + z? and 1 — k,(q)z + z? are nonzero in the complex
disk |z| < 1/2, we have

1— ax + x?

PR 1L+ (B-a) X S(B)x/*  |x|<1/2

for @ = k,(p) and B = k,(q) or vice versa (lemma 1.5.3). So
ho(pq; x) = {1+ 28,(p, q)(So(k,(q))x + Sy(k,(g))x*+ -+ )}
X{1+ (x+x>+ - +x"71))
={1+A4(x)} x {1+ B(x)}
= {1+ A(x) + B(x) + A(x)B(x)}.
We calculate
A(x)B(x) = 2X,(p, 4)(So(k,(9))x + Sy(k,(q)) x> + ---)
X(x+x24 - +x"71)
=X, (2. 9)(So (K, (9)) x> + (So(k, () + Si(k,(9))) x> + --- ).
Then
h,(p.g;x) =1+ x(2X,(p, q)So(k,(q)) + 1)
+x2(2)\ (p, Q)(So(k (q)) + S:(k,(q) )) + 1)
+x* (20, (P, 0)(So(k,(9)) + $1(k,(9)) + S,(k,(q))) + 1)

+ ceey
so that
¢ =1+2A,( z - (k.(9))
=1+ 20,(. 9)(k,() = 2) (8 (ky(9)) = §,-4(k,(9)) = 1)
for j=0,1,...,n — 1 (lemma 1.5.1). Note that this infinite series expansion of

h,(p, g; x) is in fact just a polynomial. Application of lemma 1.5.2 shows that

1 sin((j + 1)27g/n sin(2wqj/n
¢;=1+2N,(p,q)(k,(q) —2)" ( (Ein;w;/ng/ ) - sin((27:f1]//n)) -

2mg\\ 7! . -1
=1+A,(p, @)|1 —cos| —=]| ¢,(q)(sin(2mq/n))
as desired. The formula for d; is obtained by reversing the roles of p and g.
THEOREM 1.7. With notation as above, one has c; > 0 if and only if

Aa(q, p)(cos(i—w) - cos((z_jil_)ﬂ)) - Sin( q:)sm( 2q77)

n n
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and d; > 0 if and only if

e o] 22T - o 27 < i 2 i 227 .

n n

Proof. Using theorem 1.6, we note the following equivalent statements, each of
which is equivalent with ¢, > 0:

—M(p.9)9,(q) < (1 - Cos(z,,ﬂ)>3i“(2nﬂ)
M0 (a) < 2sinf L) sinf 7

n n

<afon ) 22

" e, p)(cos( qW) _ COS((_ziil)_q”_)) < sin(ﬂ)sin(zq—w),

n n n n

"\n(P,q)(Zsin( qw)cos(q—ﬂ) + 2C05(£2j—:1—)f]—z)sin(— ‘I_’T))

as desired. The result for d; follows in like manner.

COROLLARY 1.8. With notation as above, suppose that p < q, so that \,(p,q) <0
< X, (g, p). Then h,(p, q; x) has strictly positive coefficients if

2Sin((p+q)w)sin((q—p)w) <tan(gj)sm(2q_77)’ *)

n n n n

and h,(q, p; x) has strictly positive coefficients if

2sin((p i q)w)sin((q_p)w)tan(g—:) < sin(z—i—”), ()

n n

Proof. Assuming (*) holds, we have

A (g, p)(cos( q") - cos((if;f’:”_‘fl)) <A(q, p)(cos( q”) ; 1)

n
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so that, by theorem 1.7, each ¢; is positive. Now assume (**) and note

I AR L B L RN L L]

n
pm pm
A, (g, — |sin| —
<A, (q p)tan( P )sm( p )
, ( 21)77) ([ pT
< sin sm( —),
n n
so that, by theorem 1.7, each d; is positive.
Define a function Q by the rule
sin(am/n)
ybyon) = .
0(a, b, n) 2sin(bw/n)

COROLLARY 1.9. With notation as above, assume that ¢ =p + 1 < n/2. Then
h,(p, q; z) has strictly positive coefficients if

(T qm
sm(—) < tan(——)Q(2p +2,2p+1,n),
n 2n
and h,(q, p; x) has strictly positive coefficients if
T

sin(—)tan(z—:) <QQ2p,2p+1,n).

n

Proof. Immediate consequence of corollary 1.8.

CoROLLARY 1.10. Given n = 10, take p = (n — 3)/2,q = (n — 1)/2 if n is odd,
takep = (n — 4)/2, q = (n — 2)/2 if nis even. Define §(n) € {1,2} by 2p + 8(n)
=n — 2. Then h,(p, q; x) has strictly positive coefficients if

sin(%) < tan(%{r—)Q(b‘(n),S(n) +1,n).

Also h,(q, p; x) has strictly positive coefficients if

sin(z)tan(g—w) < Q(8(n)+2,8(n) +1,n).

n n

Proof. This follows from corollary 1.9, noting that

Sin( 2p + 2)#) . Sin(S(n)'n

n

sin( (2p + 1)7r)

n

sin( (8(n) + 1)77')

n

27 < €002

n n
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THEOREM 1.11. Given n > 10, put 8(n) = 1 if n is odd and 8(n) = 2 if n is even.
Set m = (n — 8(n))/2. Then h,(m, m — 1; x) has strictly positive coefficients.

Proof. By corollary 1.10, it suffices to show that

sin(%)tan(i—:) <Q(8(n)+2,8(n)+1,n).
Now Q(8(n) + 2,8(n) + 1, n) > 1/2 because

. ((3(n) + 2)7) : ((3('?) + 1)77)

sin| ———— | > sin| ————| >0

n n

Also,

pm T .
- < — j—
tan( 22 < tan( 7|

because 2p < n — 3. Thus

sin(z)tan(z—:) < sin(%) <1/2<Q(8(n) +2,8(n) +1,n),

n

as desired.
LEMMA 1.12. If n > 10, then Q(2,3,n) > 1/3.

Proof. For § = m/n, we need to show that (sin26)/(sin 36) > 2/3. Now

cos 26
cos 0 + sin 6 -—) <3/2
sin 26

because (cos26),/cos § < 1, and hence
sin 360 = sin26 cos § + sinf cos26 < (3/2)sin26.

The results follow, noting that 0 < sin 26 < sin 36.

THEOREM 1.13. Given n > 10, put 8(n) = 1if n is odd and 8(n) = 2 if n is even.

Set m = (n — &§(n))/2. Then h,(m — 1, m; x) has strictly positive coefficients for
n > 14 and for n = 12.

Proof. By corollary 1.9, it suffices to show that

sin(%) < tan(g)Q(S(n),Mn) +1,n),

where g = m. For n odd, this is the same as sin27/n) < (1,/2)tan(m/2n). For n
even, lemma 1.12 serves to establish the sufficiency of sin(7/n) < (1/3)tan(m= /2n).
In either case, success at a given value n, implies success at all n > n, such that
n = n, (mod 2). Thus the proof is complete for n > 14 upon inspection of the
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following table of calculator approximations:

n sin(7/n) sin(2w/n) (1 /3)tan(mm/2n) (/2yan(mm/2n)

12 2588 2558
13 4647 4430
14 2225 .2658
15 4067 4502

Sln( ) <. <. ; < tan( ) ( L] )

Finally, we are ready for a result complementary to theorem 1.2. Combined, the
two results provide a complete answer to the question of whether unfair n-sided dice
can have a fair sum.

THEOREM 1.14. Suppose that n € {10,12} U {14,15,...}. Let X and Y be inde-
pendent fair n-sided dice. There are independent n-sided dice U and V such that
LU+ V)y=L(X+Y), but Uand V are not fair.

Proof. Case 1: Suppose n € {12} U {14,15,...}. Put 6 =1 if n is odd and
6 = 2if nis even. Set m = (n — 8)/2. By theorems 1.11 and 1.13, A, (m — 1, m; x)
and h,(m, m — 1; x) are polynomials with strictly positive coefficients. So let U
and V' be n-sided dice whose companion polynomials are

pu(x)=h,(m—=1,m;x)  p,(x)=nh,(mm-1;x).

Then p,(x)p,(x) =[f,(x)]% so that L(U + V) = L(X + Y) as desired.
Case 2: Suppose n = 10. Computation of

=5, ,(x) —Sr~1]2_[0 _1}2r=[_52,-—2(x) =85, 1(x)
S,_1(x) S, (x) |1 X Syr1 S5, (x)

r

yields the identity S,, = (S,

r

=S, _1)(S, +S,_,). Taking r = 2 gives

(2cos8)’ + 2cosf —1 =0
Ss(2cosf) =0 iff or

(2cos )’ — 2cosf — 1 =0

Thus we may tabulate the values of k,o( p) = 2 cos(2mp,/10):
k(D) = (1 +V5)/2 k(2 =(=-1+5),2
ko(3) =0 -V5)/2  kip(4)=(-1-5)/2.

(This explicit form for cos(36°) does not seem to be widely known.) A manageable
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hand computation yields

hio(3,4; x) = (1 + x)(1 = kyo(D) x + x2)(1 = kyo(2) x + x2)(1 — kyp(3) x + x7)’
=(+D+0-(xF+x)+(1/2DA +V5)(x"+x*) +0-(x*+x°) + (x° + x*)
hio(4,3; %) = (1 + x)(1 = kyo (D) x + x2)(1 = kio(2) x + x2) - (1 = kyo(4) x + x2)°
= (X +1) +2xP+x)+(1/2) - (5 - V)X + x2) + (3 - V5)(x* + x7)
+(4 = V5) (X + xY).
Each of these polynomials has non-negative coefficients. (Note that since there are
some zero coefficients, machine approximations are not to be relied on for this

example.)
Let U and V be 10-sided dice whose companion polynomials are

pu(x) = hyo(3,4; x) pr(x) = hy(4,3; x).
As before, L(U+ V)= L(X + Y), but U and V are not fair.

Note. A computer search (using MACSYMA) revealed this as the only such
example for n < 11.
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UNSOLVED PROBLEMS

EDITED BY RICHARD GUY

In this department the MONTHLY presents easily stated unsolved problems dealing with notions
ordinarily encountered in undergraduate mathematics. Each problem should be accompanied by
relevant references (if any are known to the author) and by a brief description of known partial results.
Manuscripts should be sent to Richard Guy, Department of Mathematics and Statistics, The
University of Calgary, Calgary, Alberta, Canada T2N IN4.

Three Old Problems about Polynomials with Real Roots

RAPHAEL M. ROBINSON
Department of Mathematics, University of California, Berkeley, CA 94720

We consider only polynomials all of whose roots are real. For such a polynomial
of degree n > 1, the span is the maximum distance between two roots, and the gap
is the minimum distance. All three problems concern spans, and the third also
involves gaps.

Problem 1. The polynomials considered here are monic and lie in Z[x], that is,
have integer coefficients and leading coefficient 1. It was shown in [1] that there are
infinitely many monic polynomials in Z[x] which are irreducible and have all their
roots in [a, b], provided that b — a > 4. Polya had proved earlier that the number is
finite if b — a < 4. If b — a = 4, then there are infinitely many such polynomials if
a and b are integers. Are there any other cases with b — a = 4 where the number is
infinite? Among the monic polynomials in Z[x] whose roots all lie in [—2,2.5] but
not all in [—2,2], are there infinitely many which are irreducible and have span
< 47 If the answer to the first question is yes, then so is the answer to the second,
but perhaps not conversely.

Problem 2. Here we allow polynomials in R[x], that is, polynomials with real
coefficients. An attempt was made in [2] to find the maximum possible span for the
kth derivative of a polynomial f(x) all of whose roots lie in [—1,1]. The only
nontrivial cases are those with k + 2 < n < 2k + 1. It was shown that in these
cases the maximum can be attained only when all the roots of f(x) lie at 1 or —1.
The obvious conjecture is that these roots must be distributed as equally as possible
between the two end points. How can this be proved?

Problem 3. A study was made in [3] of monic polynomials in Z[x] having real
roots and span < 4. The objective was to determine all such polynomials of degree
n < 8 which are irreducible. In the process, it was necessary to compute some
reducible polynomials with distinct roots. It was noticed that there is a strong
correlation between reducibility and the smallness of the gap. For example, among
the monic polynomials in Z[x] with span < 4, there are 17 essentially different
sextics which are irreducible, and all have gaps > 0.23. On the other hand, there are
19 such sextics which are the product of two irreducible cubics, and 12 of these have
gaps < 0.15. Is there a general theorem which determines values of », s, and g, so
that a monic polynomial in Z[x] of degree n with real roots is reducible if it has

329
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span < s and gap < g? Many reducible polynomials with distinct roots should
satisfy the conditions. One suitable triple is n = 6, s = 4, and g = 0.23.

REFERENCES
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A Challenging Definite Integral

H. S. M. COXETER
Department of Mathematics, University of Toronto, Ontario, M5S 141, Canada

In spherical 3-space, that is, on the 3-sphere x? + x3 + x7 + x2 = 1 in Euclidean
4-space, a certain tetrahedron of known volume (which Schléfli called an ortho-
scheme) can be dissected into three smaller orthoschemes (two of them congruent)
whose volumes can be expressed in terms of Schlifli functions [2, pp.177-179; 1,
pp. vii, 6-12, 195]. It follows that

f+2g=2/15,
where
f 1 f arc sec t dt f arc sec t dt
w2 h e+ 2+ D +3) (t+2We+ 1

N. J. A. Sloane has used a computer to show that
f = 0.02268 05970 96406 8,
g = 0.05532 63681 18463 3.

The problem is to establish the precise value of f+ 2g without appealing to
geometry or the computer!
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How Big a Slice Can You Make Through a Cube?

RAPHAEL M. ROBINSON
Department of Mathematics, University of California, Berkeley, CA 94720

Prove or disprove that for each n > 2, the maximum (» — 1)-dimensional volume
of a cross section of an n-dimensional unit cube is V2 .

LETTERS TO THE EDITOR

Editor:

In the Notes section of this MONTHLY, Aug.—Sept. 1987, pp. 662—-663, Boo Rim
Choe offers an elegant proof of ¥1/n* = #%/6. It must, however, be remarked that
this proof is by no means new: In a slightly different form it had been published by
Euler in 1743 ([1]); cf. [2] (p.388; footnote to nr.210) and [3]. (Stickel’s paper,
mentioned in [3], is reprinted in Euler’s Opera Omnia 1,14, pp.156-176.)

1. L. Euler, Demonstration de la somme de cette suite 1 + § + ¢ + % + 5

+ % + etc., Journal littéraire d’Allemagne, 2:1 (1743) 115-127. (Opera
Omnia, 1, 14, 177-186.)

2. K. Knopp, Theorie und Anwendung der unendlichen Reihen, Grundlehren
der mathematischen Wissenschaften 2, 5th ed., Springer-Verlag, 1964.

3. K. Knopp and L. Schur, Uber die Herleitung der Gleichung ¥ ,1/n* = 72/6,
Archiv der Math. und Physik, 27 (1918) 174-176. (1. Schur, Gesammelte
Abh., 11, 246-248; Springer-Verlag 1973.)

Gerhard Turnwald
Universitit Tiibingen
Mathematisches Institut
Tubingen, West Germany
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Two Discrete Forms of the Jordan Curve Theorem

LAWRENCE NEFF STOUT
Department of Mathematics, Illinois Wesleyan University, Bloomington, IL 61702

The Jordan curve theorem is one of those frustrating results in topology: it is
intuitively clear but quite hard to prove. In this note we will look at two discrete
analogs of the Jordan curve theorem that are easy to prove by an induction
argument coupled with some geometric intuition. One of the surprises is that when
we discretize the plane we get two Jordan curve theorems rather than one, a
consequence of the interplay between two natural products in the category of
graphs. Topology in this context has been studied by Farmer in [2].

To state the discrete versions, we need to know what the discrete analog of the
plane is and what plays the role of a simple closed curve. Since the plane is the
topological product of two lines, we take as our discrete analog the product of two
discrete lines. We will use undirected graphs for our analogs of spaces, with vertices
for points and edges connecting points which are to be thought of as touching.

DEFINITION 1. A discrete n point line [1, n] is a graph with vertices {1,2,..., n}
and edges connecting each vertex to itself and to its successor. The discrete line L is
a similar graph based on all of the integers.

DEFINITION 2. A discrete n point circle is a discrete n point line with » and 1
connected by an edge.

There are two important products in the category of graphs: the categorical
product and the tight product. The tight product is used in building graphs using a
sort of prime factorization in Behzad and Chartrand [1].

DEeFINITION 3. The product of two graphs (V;, E\)1(V,, E,) has the set V; X V,
as vertices and has (v,, v,) connected to (v], v}) by the edge (e;, e,) if e; connects
v, and v] and e, connects v, and v}.

DEFINITION 4. The tight product of two graphs has ¥} X V, as its set of vertices
and has an edge connecting (v, v,) and (v{, v}) if and only if v; = v{ and there is
an edge connecting v, and vj, or v, = v} and there is an edge connecting v; and vj.
We denote this as (V, E,)O(V,, E,).

If we take the product of two lines we get a patch of the plane with points
connected which are nearest neighbors vertically, horizontally, or diagonally. If we
take the tight product we leave out the diagonal connections.

The analog of continuous functions will be mappings of graphs: vertices are
taken to vertices and edges to edges. A closed curve is the image of a circle under a
graph map. It is simple if the map also reflects adjacency; that is, if ¢(v) has an
edge connecting it with ¢(v’) then v and v’ had an edge connecting them too.

332
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Simple curves then are forbidden to touch themselves, not just forbidden to cross
themselves. This puts us in a position to state the two forms of the Jordan curve
theorem.

THEOREM (Jordan curve theorem for tight closed curves). If s is a simple closed
curve with domain having at least 8 points in L0 L, then L X L\ im(s) has exactly
two product path components.

THEOREM (Jordan curve theorem for product closed curves). If s is a simple
closed curve with domain having at least 4 points in LT1L, then L X L\ im(s) has
exactly two tight path components.

L4 . . . . . . . . . . >-L\.-/——\‘.4 . . .
S A R oYY
: —!—-!~ Pl EEENVANNRNV NV
N R CL NI S
l | ' U NN\
) —-i——-i———i— . . - . . » . . 'Y . . . .
FiG. 1. F1G. 2

Notice that in Figure 1 the interior of the tight product closed curve is not
connected in the tight product space. The interior is, however, connected in the
product space, which allows diagonal connections. In the second illustration we
have a simple closed curve in the product sense which fails to disconnect the
categorical product space. If we use the tight product instead, then the interior is
not connected to the exterior and each forms a connected set. The minimum size
restriction eliminates the trivial cases in the next illustration.

R A S PN VA
. L] ,_"_..!.__ . . L] . g!——yi\ [ ] L]
N
FiG. 3.

Proof (for product closed curves). Since a simple closed curve involves only a
finite number of points we can move it into the first quadrant and guarantee that
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the coordinates of points are bigger than 0 and less than m for sufficiently large m.
We define the rank of s as the triple (N, X, Y) where N is the number of distinct
points in the closed curve and (X, Y) is the point in the closed curve with largest
first coordinate X and largest second coordinate Y of the points of im(s) with that
first coordinate. Ranks are ordered lexicographically. This is a well-ordering, so
strong induction on rank is a valid proof technique.

The smallest simple closed curve for this theorem has N = 4. It forms a diamond
surrounding a single point which forms the inside component. All other points are
connected to the point (0,0) by a tight path. The requirement that a simple curve
reflect adjacency eliminates other possible curves of length four. Thus the theorem is
true for closed curves with length 4.

Now suppose that the theorem has been proved for all closed curves with rank
less than (N, X, Y) and that s is a simple closed curve with rank (N, X, Y). We will
reduce the rank by moving the point (X, Y) to (X — 1, Y). The points in the closed
curve s which were adjacent to (X, Y) could only be among (X, Y — 1), (X — 1,
Y —1),and (X — 1,Y + 1). (Two points are adjacent to (X, Y) and they must be
nonadjacent, hence, (X — 1,Y) is not one of the possible points.) All of these are
adjacent to (X — 1, Y) so the result is still a closed curve, though it may not be a
simple closed curve. Observe that moving this point reduces the rank. If the new
closed curve is a simple closed curve then we are done since the interior of the
original curve is the interior of the curve of lower rank with the point (X — 1, Y),
which is tight adjacent to it, added. The exterior of the original curve is the exterior
of the new curve with the point (X, Y) removed. This is still tight connected since
any tight path passing through (X, Y) in the exterior of the lower rank curve can
take a detour through (X,Y + 1), (X +1,Y + 1)and (X + 1,Y).

There are two ways for the resulting closed curve to fail to be simple: either the
point (X — 1,Y) is adjacent to one of the points two steps away from (X, Y) in s,
or it is adjacent to a point more than two steps away. If (X,Y) was s(h) and
(X — 1,Y)is adjacent to s(h — 2) then we can remove s(h — 1). If (X, Y') was s(h)
and (X — 1,7) is adjacent to s(h + 2) then we can remove s(h + 1). Removing
these points, if necessary, will further reduce the rank. The interior of the resulting
curve is tight connected to (X, Y), so the interior of the original curve is tight
connected. Any tight path passing through one of the points removed has a detour
which avoids them and stays in the exterior. Figure 4 shows how this works for a
typical case.

NN VRN P

SN o~ N N
“Nia/ D /f\!/qz ANV
D7 N7 A N 21N

FiG. 4.

Suppose that (X, Y) is s(h) and (X — 1, Y) is adjacent to s(k) where k is more
than two away from h. Then by moving to (X — 1,Y) we pinch the closed curve
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into two closed curves which have a tight path connecting their interiors which
passes through the point (X — 1,Y) and each of which is strictly shorter than our
original loop. (See Figure 5.) Since they have smaller ranks they each divide the
product into exactly two tight pieces. The interior of s is then the union of the
interiors of these two new closed curves plus the point (X — 1, Y). It remains to
show that the exterior is tight path connected.

»
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The exterior is the intersection of the exteriors of the two new closed curves. Call
the new closed curves s; and s, and renumber so that the intersection points are at
=0 and ¢t =1, with (X - 1,Y) =s,(1). Let p and ¢ be in ext(s;) N ext(s,).
Since ext(s,) is tight path connected there is a tight path in ext(s,) from p to g. If
that path is also in ext(s,) then nothing more needs to be done. If not then there are
points p’ and ¢’ such that p’ is the last point in the path for which the segment
from p to p’ is in ext(s,) and ¢’ is the first so that the segment from g’ to ¢ is in
ext(s,). It follows that both p’ and ¢’ are adjacent to points in s,. Thus to prove
the theorem it will suffice to show that the set E of all points adjacent to s, and in
the exterior of both curves is tight connected.

Since the original curve was simple we know that 5,(0) and s,(1) are the only
points in s, that are adjacent to points in s;. We will show that E is tight path
connected by walking around s, starting at (X, Y) and observing what happens in
each nine point patch with an element of s, at the center. It is not difficult to list all
of the ways that a product path can pass through a nine-point patch (see Figure 6)
and in all cases the points on either side of the path form tight path connected sets.

Since s, is of finite length we can piece together such patches to see that the set E is
tight path connected.

- O s @

FIG. 6.
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The proof of the theorem for simple closed curves in the tight product is a
similar, though slightly less difficult, induction argument. The rank is defined the
same way as in the product case. The reduction is done by moving the point ( X, Y)
to (X — 1, Y — 1) which either gives a simple closed curve of lower rank or pinches
the curve in two or gives a curve which can be shortened. Analysis of the possible
nine-point patches again allows us to show that the exterior is connected.

The author would like to thank the referees and Randall Weiss for suggestions which improved this
note.
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Some Polynomial Identities that Imply Commutativity for Rings
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1. Introduction. Johnsen, Outcalt, and Yaqub [5] considered the ring-theoretic
analogue of a well-known group-theoretic result, which states that a group G
satisfying (xy)? = x%y? for all x and y in G is necessarily abelian. It is also an easy
exercise to show that a group G is abelian if (xy)? = yx?y for all x and y in G; the
corresponding ring-theory version has not yet appeared in any text. It is surprising
that the ring theoretic analogue of many such results escaped the attention of the
research workers, though the commutativity of the rings satisfying other identities
such as xy2x = yx?y has been considered fully [1], [3], [6]. The reason for this sort
of omission is understandable. We know that the essential mechanism in the proof
of such results in groups is cancellation, which is not permissible in a general class of
rings. Only a few results could be proved by going through several permutations of
the substitutions of, say, y by x +y and x by x + 1 starting with the given
identity. To obtain other results, complicated combinatorial arguments had to be
used [2], [4]. In this note our objective is to establish a result which allows a limited
cancellation property in rings with unity. The proof depends on the simple strategy
of substituting x + 1 for x to get another identity simpler than the original one.
Indeed, we prove the following:

THEOREM A. Let R be an associative ring with unity 1 and let F(X,Y, Z) be a
polynomial with coefficients from elements of R where the indeterminates commute
neither with each other nor with the elements of R. Suppose that F is homogeneous in X
of degree n and homogeneous in Y of degree m and that F(x, y, xy — yx) = 0 for all x
and y in R. Then m'n'\F(1,1, xy — yx) = 0 for all x and y in R.
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In Section 3 we shall use our theorem to find some ring-theory version of the
group-theoretic results including that of Johnsen, Outcalt, and Yaqub [5] and that of
Awtar [2].

2. Proof of Main Theorem. Let R[X, Y, Z] denote the ring of the polynomials in
noncommuting indeterminates X, Y, Z over R. Define an automorphism o on
R[X,Y, Z] by:

o[F(X,Y,Z)] = F(X+1,Y, Z) (1)

and a o-derivation A = ¢ — I
A[F(X,Y,Z2)] =F(X+1,Y,Z) - F(X,Y, Z). (2)
Easy computations show that for any two polynomials F and G in R[X, Y, Z],

we have
A[F+ G] = A[F] + A[G] (3)

ALFG] = (A[FD(a[G]) + F(A[G]) (4)

and an induction gives the Leibniz formula

N[FG] = z( J(XLF]) (o2 "[G]). ()

This allows us to prove:

LEMMA. If F is homogeneous of degree n in X, then A"'[F(X, Y, Z)| = n'F(1,Y, Z)
and A"[F(X,Y,Z)]=0 for m > n.

Proof of Lemma. By (3) it suffices to prove the lemma when F(X,Y, Z) is a
monomial. It can be proved by induction on n. If n = 0, F(X, Y, Z) is independent
of X and A’[F(X,Y,Z)|=F(X,Y,Z)=FQ,Y, Z). Agam A[F(X,Y,Z)] =
F(X+1,Y,Z)—- F(X,Y,Z)=0 and, hence, A"[F(X,Y, Z)] = 0 for all m > n.

For the induction step, write the monomial F(X,Y, Z) as AXG, where A4 is a
monomial with no X’s in it, and G is a monomial of degree n — 1 in X. Then
A[A] = 0 and by (4), A[4X] = 4; hence, ATAX] = A" '[4] = 0 for r > 1 by the
case n = 0. Again by using (5), we get '

A"[AXG] = (AX)A"[G] + nA(oA""1[G]).

By the induction hypothesis, the first term on the right side is zero if m > n. The
second term is zero if m > n; if m = n, this term equals nd(n — 1)!G(1, Y, Z) =
n'F(1,Y, Z), which proves the lemma.

Proof of Theorem A. If F(x, y,xy —yx) =0 for all x and y in R, then on
replacing x by x + 1, we get

Fx+1,p,(x+1)y—p(x+1)=F(x+1,y,xy—yx) = 0.

That is, if F(x, y, xy — yx) is zero, the same is true for ¢[F], A[F], and A"[F].
Hence, n!F(1, y,xy —yx) =0 for all x and y in R. By applying the whole
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procedure again on the polynomial F(1, Y, Z), which is homogeneous of degree m
in Y by using a new derivation, A’ defined as

N[F(X,Y,Z)] =FQ1,Y+1,Z) - F(Y, Z).

The result is the conclusion of the theorem.

3. Applications to Commutativity Theorems. We can derive a number of results
with the help of our theorem proved above. As we have claimed in the beginning,
even those results which could be proved earlier using very complicated combina-
torial arguments will become corollaries of our theorem. We need just to select a
suitable polynomial F(X, Y, Z).

To begin with we prove the following result. Let us assume hence onward that R
is an associative ring with unity 1.

PROPOSITION 1. Let R be a ring satisfying (xy)’ = yx?’y for all x and y in R. Then
R is commutative.

Proof. Take F(X,Y, Z) = ZXY. Then indeed F(x, y, xy — yx) = (xp)* — yx?%y
= (. Hence, by applying Theorem A, F(1,1, xy — yx) = 0, that is, xy = yx and the
ring R is commutative.

Similarly, by taking the polynomial F(X, Y, Z) = XZY we prove the result due
to Johnsen, Outcalt, and Yaqub [5]. As has been shown in example 3 of [5], if we
replace the identity (xy)? = x2y2 by (xy)® = x3y?, then the commutativity is not
guaranteed. The following result suggests that in this case the commutativity fails
only in rings that have no 2- or 3-torsion.

PROPOSITION 2. Let R be a ring satisfying (xy)® = x3y* for all x and y in R. If 6
is not a zero divisor in R, then R is commutative.

Proof. Take F(X,Y,Z) = X?ZY?+ XZXY? + XYXZY, then F(x, y, xy — yx)
=x%y? — (xy)® = 0 and by our Theorem 4, n!m!F(1,1, xy — yx) = 2!12!3(xy —
yx) = 0. But 2 and 3 are not zero divisors in R, so xy — yx = 0, which gives
commutativity.

In fact, applying Theorem A we can derive even more general results. As an
example we prove below a generalization of Proposition 2 which was earlier

established by Awtar [2].

PROPOSITION 3. Let n > 1 be a positive integer and R be a ring in which no prime
number < n is a zero divisor. If R satisfies (xy)" = x"y" for all x and y in R, then R
is commutative.

Proof. Just as we did in the proof of Proposition 2, we take F(X, Y, Z) to be a
sum of n(n — 1)/2 monomials each of which is a product of one Z by n — 1 X’s
and n — 1Y ’s (it takes one term to move each ¥ in XYXY ... to the right, past one
X). Then we have F(x, y, xy — yx) = x"y" — (xy)" = 0, and by Theorem A,

mintF(1,1, xy — yx) = ((n = D)* - (n(n = 1) /2)(xy — yx) = 0.

This implies that xy — yx = 0 if all primes dividing ((n — 1)!)*(n(n — 1)/2) are
not zero divisors.
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REMARKS 1. If we take F(X, Y, Z) = XZ — 2ZY, the polynomial identity (x +
2y)xy = xy(x + 2y), or if we take F(X,Y, Z) = XYZ, then the polynomial iden-
tity (xy)* = xy2x for all x and y in R implies commutativity. Other examples can
be constructed ad libitum ad infinitum.

2. More subtle commutativity theorems, which do not work for all rings with
unity, also often assume polynomial identities of the form F(x, y, xy — yx) = 0,
but with F(1,1, Z) = 0.
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An Overlooked Example of Nonunique Factorization

HALE F. TROTTER
Department of Mathematics, Princeton University, NJ 08544

On the face of it, the familiar identity
sin’f = 1 — cos? = (1 + cost)(1 — cos 1) (1)

asserts that two different-looking pairs of factors have the same product. It seems to
have gone unnoticed, however, that (1) is actually a valid example of nonunique
factorization in an integral domain when looked at in the proper context. Its
familiarity makes it a particularly attractive example to present to students encoun-
tering nonunique factorization for the first time. Just as the usual textbook examples
involving integers in quadratic number fields, suchas2 - 3 = (1 + Y=5)1 — V/=5),
show that unique factorization can fail in rings very much like the integers, the
example treated here shows that it can fail in a ring very much like the ring of
polynomials over a field.

Of course we have to do more than simply remark that the two sides of (1) look
different. We must specify the ring we are working in, and then show that the
factors sin#, 1+ cos?, and 1 — cost are irreducible, and that sins is not the
product of one of the other factors and a unit (invertible element) of the ring.

We shall work with the real trigonometric polynomials, that is, the functions
representable as finite sums of the form

k
ag+ Y (a,cosnt + b,sinnt) (2)
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in which the a’s and b’s are real numbers. Students who have seen anything of
Fourier series find it natural enough to consider these functions, although they may
not have seen them called trigonometric polynomials, or considered the question of
whether they form a ring. The familiar Fourier coefficient formulas a, =
Qm) Y7 f(x)dx, a,=7"Y" f(x) cosnxdx, and b, =77 f(x)sin nxdx for
n > 0, show that the coefficients in (2) are uniquely determined by the function.

The degree of a nonzero trigonometric polynomial is defined as the largest value
of n for which a, and b, are not both zero. The following well-known lemma shows
that the trigonometric polynomials form a ring, and that degrees behave as they do
for ordinary polynomials.

LEMMA. The product of a trigonometric polynomial of degree m and one of degree n
is a trigonometric polynomial of degree m + n.

Proof. The assertion of the lemma is obvious if m or n is 0, because a
trigonometric polynomial of degree zero is simply a constant function. From now
on we assume m, n > 0. Recall the standard identities for expressing products of
sines and cosines in terms of sums and differences of other sines and cosines:

(sina)(sinb) = [cos(a — b) — cos(a + b)] /2
(cosa)(cosb) = [cos(a — b) + cos(a + b)] /2
(sin a)(cosb) = [sin(a + b) + sin(a — b)] /2.

Applying these to the product of p cosmit + ¢sin mt and rcos nt + ssin nt and
collecting terms, gives the result

Acos(m — n)t + Bsin(m — n)t + Ccos(m + n)t + Dsin(m + n)t, (3)

where A = (pr+ ¢s)/2, B=(ps—qr)/2, C=(pr—gs)/2, and D = (ps+
qr)/2. When m > n, (3) is already in the form (2). If n > m, replacing cos(m — n)
by cos(n — m) and sin(m — n) by —sin(n — m) puts it in the proper form, while if
m = n it is necessary to replace sin0 by 0 and cos0 by 1. Direct calculation gives

C*+ D*=(p*+ ¢*)(r* + 52) /4,

which shows that if neither factor is zero (so p*> + ¢? # 0 and r? + 52 # 0) then
C? + D? # 0, so the product has degree m + n.

Now consider the product of any two trigonometric polynomials of respective
degrees m and n. It is a sum of products of terms of the type just considered, so it is
a trigonometric polynomial. The product of the two high-order terms gives a
non-zero term of degree m + n which cannot be cancelled by any other term in the
product, so the result has degree m + n as claimed.

PROPOSITION. The trigonometric polynomials form an integral domain. Further-
more,

(a) The units (invertible elements) in this domain are the elements of degree 0,
that is, the constant functions.

(b) All elements of degree 1, including sint,1 + cost, and 1 — cost, are irre-
ducible.
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The proposition follows at once from the lemma, just as with ordinary polynomi-
als, and we leave the details to the reader.

It follows from (a) and (b) that the factors in (1) are irreducible and that sin ¢ is
not the product of one of the other factors with a unit. Hence we have a genuine
case of nonunique factorization.

One can very well stop here in an elementary discussion, but the example does
raise another point that may be of interest.

The proof of the lemma uses the fact that the sum of the squares of two real
numbers is zero only when both are zero, and breaks down if complex coefficients
are allowed. Using the complex exponential forms of the sine and cosine shows that
the ring of trigonometric polynomials with complex coefficients is the same as the
ring of polynomials in positive and negative powers of z = e’ with complex
coefficients. To see that this is a unique factorization ring, define the degree of a
polynomial in z and z~! as the difference between the largest and smallest
exponents appearing in non-zero terms. With this definition, the elements of degree
zero are the monomials, which are exactly the invertible elements in this ring. The
usual proof that ordinary polynomials over a field form a Euclidean ring then goes
through with no essential change.

What is it about the change of coefficients that alters the nature of factorization
in the ring? For one thing, introducing complex coefficients produces many more
units—all the non-zero constant multiples of powers of z = cos¢ + isin¢ and
z7!' =cost —isint. Our particular example breaks down because the factors
involved cease to be irreducible. We have

sint=(z—-2z"1)/Q2i)=z"Yz—-1)(z+1)/(2i),

l1—cost=(—z+2-zY/2=—-z"Yz-1)/2
and

1+cost=z"Yz+1)°/2,

so both sides of (1) become
—272(z =1z + 1)’ /4

when expressed as a product of irreducible factors.

A ring of algebraic integers can sometimes be enlarged to another in a way that
restores unique factorization, although the problem of how and when it can be done
is not at all elementary, and as far as I know is not solved in general. For example,
the ring Z[y—3] consisting of numbers of the form a + b/—3 with a and b
integers does not have unique factorization, as the equation 2 -2 = (1 + V=3)
(1 — V=3 shows. Unique factorization can be restored in this case by enlarging to
the ring of all algebraic integers in the field Q(/—3), which is Z[w], where
w = (1+vV—=3)/2is a complex cube root of one. This does not work for the ring
Z[V—5] used in the example at the beginning of the paper, because that is already
the ring of all algebraic integers in the field Q(yY—5). The ring of all algebraic
integers in the enlarged field Q(Y—5, i), however, which can be shown to be the
ring Z[n] where n = (i + Y—5)/2 is a root of x* + 3x2 + 1, is an enlargement of
Z[/— 5] that does have unique factorization. I do not know an elementary proof of
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the last assertion, but it is easily established by standard arguments based on
Minkowski’s estimate, as illustrated in [1, chapter 12], [2, chapter 13], or [3, chapter
5].
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Two Counterexamples in General Topology

P. V. KRISHNAIAH
Department of Mathematics, The University of Toledo, Ohio

In [3] Albert Wilansky inserted two axioms between the separation axioms T}
and T,, namely the US-axiom (every convergent sequence has a unique limit) and
the KC-axiom (every compact subset is closed). He showed that 7, = KC = US =
T, and discussed at length the problem of constructing counterexamples of compact
spaces showing the failure of each of the reverse implications, proving several
interesting results in the process. As a consequence of theorems 4 and 5 of [3], it was
brought out that, if a T,-space X is not a k-space (a k-space is one in which a set is
closed iff its intersection with each closed compact set is closed) then its one point
compactification X* is US but not KC. An example of a T,-space, which is not a
k-space is given in [3], example 7. Since this example involves the Cech compactifi-
cation, it seems worthwhile to have the following two elementary examples.

Example 1. The Appert space A (see [1], p. 117) whose ground set is the set of all
positive integers and E C A is open iff either 1 & E or 1 € E and

nlgn;o%{ 5 xE(r>} -1,

r=1

Example 2. The Fortissimo space F (see [1], p. 53) whose ground set is any
uncountable set with a particular point p and E C F is open iff either p & FE or
p € E and F\ E is countable.

One easily verifies that both 4 and F above are noncompact 7T,-spaces, that both
are pseudofinite (i.e., all compact subsets are finite) and that neither is discrete.
Hence, neither of them is a k-space so that both A" and F* are US but not KC.
This can in fact be shown directly. While 4"\ {1} and F*\{p} are compact
nonclosed subsets of A" and F*, respectively, one easily imitates the proof of
theorem 4 in [3] to show that they are US spaces.

Other examples may be found in [2, example 2.3] and [4, p. 345].
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An Elementary Approach to y”’ = —y

J. L. BRENNER,
10 Phillips Rd., Palo Alto, CA 94303

THEOREM. Every solution of y”' + k2y = 0 (k > 0) on the interval a < x < b has
the formy = c,cos kx + c,sin kx, where c,, ¢, are constants.

Proof. Without loss of generality, take k = 1 (the general case comes from the
change of independent variable ¢ = kx). Define

¢, =ycost— y’sint,

(1)

c,=ysint + y’cost.

Since y” +y =0, it is clear that ¢{ =c¢} =0, so that ¢}, c, are constant.
Eliminate y’ from equations (1). O

There are many other proofs of this theorem. From y’(y”” + y) = 0, one finds
y’? + y2 = r? = const, so that (if r > 0)dy/ {r*> —y> = +dt, y = rsin(+t + C).
See also [1, pp. 83-84].
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A Simple Proof for the Simplicity of 4,

BENNO ARTMANN
Fachbereich Mathematik, TH Darmstadt, SchloBgartenstr. 7, D-6100 Darmstadt, West Germany

Dedicated to Giinther Pickert on the occasion of his 70th birthday

The alternating group A is usually the first example of a simple nonabelian
group for the student. The group A4, is isomorphic to the group D of rotations of a
regular dodecahedron (or icosahedron). I think it may be worthwhile to see a proof
for the simplicity of D whose ideas are immediately transparent, easily remembered,
and use nothing more than the concept of a group and a homomorphism between

344
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groups. Using the representation of A, as a rotation group, we put A5 in perspec-
tive with the simple group SO,. Other short proofs of the simplicity of 45 have
recently been proposed by Gallian [4], Laue [7], and David [2]. These, like the
well-known standard proofs for the simplicity of A4,, are within the framework of
permutation groups.

The pedagogical philosophy of this paper is in agreement with Waterhouse [9].
With Waterhouse I believe that the use of intuitively obvious geometrical facts is a
benefit for the beginner, leaving out technicalities and directing his attention to the
really important arguments of the proof.

Apart from group theory, the regular dodecahedron deserves attention in itself as
one of the oldest topics of mathematics that is still alive in modern theories (see,
e.g., [1], [6], [8]). Felix Klein’s book [5] on the icosahedron contains the basic idea of
looking at the elements of order 2, 3, and 5 of the group A (or D), which is
essentially the same in all proofs. From the geometric inspection of rotations of this
order we will get the simplicity of D in the present note.

Let me first give the proof in a shorthand manner; the details will be supplied
later. Let D be the group of rotations of the regular dodecahedron. D has 60
elements, specifically 24 elements of order 5, 20 of order 3, and 15 of order 2.
Looking at the way these mappings operate on the vertices of the dodecahedron we
observe the following facts:

n’

(2a) All elements of order 2 are conjugate.
(2b) The elements of order 2 generate D.
(3a) All subgroups of order 3 are conjugate.
(3b) The elements of order 3 generate D.
(5a) All subgroups of order 5 are conjugate.
(5b) The elements of order 5 generate D.

Now let ®: D —» H be a homomorphism of groups that is not injective. Then
there must be an element x, different from the identity of D, in the kernel of ®.
From ®(x) = e we get ®(x*) = e = ®(a~'xa) for any exponent k and any a € D.
If x is an element of order 2, by (2a, b) we have that the whole of D is mapped onto
the neutral element of H. By (3a,b) or (5a, b) the same follows if x is of order 3 or 5
and, therefore, D can have no proper homomorphism.

For a presentation of this proof in a class of beginners we need to show: (A) that
the rotation groups of the dodecahedron consists of no more than the 60 elements
listed above, and (B) the facts (2a)—(5b). When this is done we could use some more
concepts of group theory to establish the isomorphism between D and A4, and
finally elaborate some details with elementary linear algebra.

(A) Certain special projections of the dodecahedron will make the symmetries of
order 2, 3, and 5 obvious:

Since there are 15 pairs of parallel opposite edges, we get 15 rotations of order 2
as in Fig. 1(2). Similarly we find 10 axes for 20 rotations of order 3 from Fi1G. 1(3)
and 6 axes for 24 rotations of order 5 from FIG. 1(5). Together with the identity we
have 60 rotations in all. Looking at the vertices A, B, C in Fig. 2 and their images
under a rotation p, we see that there can be no more than 60 rotations in all. Finally
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1/2

Fi1G. 1(2) Fi16. 1(3)

F1G. 1(5)

we may observe that the order of a rotation is determined by the type of its axis in
the dodecahedron.

(B) Let R be the center of the face (pentagon) ABCDE of the dodecahedron, let r
be the line OR, and let p = rot(r, 1/5), the rotation with axis r sending A - B —» C
etc. Similarly let S be the center of BCHMG and o = rot(s,1/5) withC - B - G
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— M etc. Composing p and o we get

A B C D ... F G A B C G
e: Ll 1 VN op: L L 1 ]

B C D E G H G B 4 C
oo L 1 | y

G B 4 C

op = B = rot(b, 3) is the }-rotation with axis b = OB and angle 27 /3.
Similarly, if we take a = OA and « = rot(a,1/3) we get a8 = rot(r,3/5) = p’.
(Students should calculate this and the product 8~ 'pf8 as above.)

Fi1G. 2

Let us now prove the claims (5a,b). For (a) we take p, 8 as before and obtain
B~ 0B = 0. As easy consequences we have 87108 = 62 and so on, and likewise we
get every other rotation of order 5 from p. (We need not speak about conjugate
subgroups as is done in (5a).) The students should note that, in geometrical terms,
we use B to move the axis r to s. This underlying principle makes the calculations
obvious.

(5b) We have already seen op = B, an element of order 3. Since the geometrical
situation is the same around every vertex, we get every other element of order 3
similarly. Let Z be the center of the edge [AB]. How can we obtain the half-turn {
about the axis OZ? In order to turn the arrow AB around we first move it by p into
position BC and then turn it back with 8 = op. Computing Bp = op?> we get
Bp = op> = {. Again from the geometrical situation it is obvious that we can
generate all other half-turns in the same way.

(2a,b) and (3a, b): Meanwhile the students will have realized that it is worthwhile to
look at the axes of the rotations under consideration. By moving the axis back and
forth in an appropriate way we prove the claims (2a) and (3a) as was done for (5a).
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F1G. 3

F1G. 4
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F1G. 5

For (2b) we should try to move the dodecahedron by half-turns so that, for instance,
point A comes back to its original position. The result will be—if not the
identity—a rotation of order 3. Similarly for rotations of order 5 and for (3b).

(C) Inscribed in the regular dodecahedron we find 5 cubes; one of them is indicated
in Fig. 5. In fact, Euclid already made use of these cubes in his construction of the
dodecahedron in the Elements XIII, 17 (see [3]). The edges of the cubes are
diagonals of the faces of the dodecahedron, and the 12 edges of a cube are
distributed over the 12 faces of the dodecahedron. If we select a specific face of the
dodecahedron, the five cubes C,, ..., C; will be determined by the five diagonals of
that face. It is now easily seen (and in fact well known), that D induces all
permutations of 45 of the five cubes.
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E 3259. Proposed by Jordi Dou, Barcelona, Spain.

Let R be a semicircular region bounded by a line L and a semicircle S with
center on L. Suppose P, and P, are given points in the interior of R. We wish to
find parallel lines /;, /, through P,, P,, respectively, such that

P\C, PG,

PlDl - PZDZ,

where C;, D, are the intersections of /; with S and L and C,, D, are the
intersections of /, with S and L. Give a necessary and sufficient condition on
P,, P, for such parallel lines to exist.

E 3260. Proposed by Peter Andrews and Edward T. H. Wang, Wilfrid Laurier
University, Waterloo, Ontario, Canada.

In how many ways can n white squares and »n black squares be chosen from a 2n
by 2n chessboard in such a way that no two of the chosen squares lie in the same
row or the same column?

350
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E 3261. Proposed by Detlef Laugwitz, Technische Hochschule, Darmstadt, West
Germany.

Let G be the group of 3 by 3 orthogonal matrices with rational entries. Let .S be

the subset of G consisting of the six 3 by 3 permutation matrices and all matrices of
the form

a b

- =0

c ¢

b a )
-—— =0

c c

0 0 1

where a, b, ¢ are integers with a? + b? = ¢? > 0. Does S generate G?

E 3262. Proposed by R. G. E. Pinch, Emmanuel College, Cambridge and C.
Boyd, University of Edinburgh.

It is known that every natural number n can be expressed as the sum of four
squares of integers, and that three squares suffice unless # is of the form 4¢(856 + 7).
Show that every sufficiently large natural number can be expressed as the sum of at
most five squares of composite numbers (i.e., squares of positive integers divisible
either by the square of a prime or by the product of two distinct primes).

E 3263. Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.

For n > 2 let

Hy={X=(x;,....x,): x;+ - +x,=1, x,>0,...,x,>0}.

n

Forl <k <nand X € H, let

Se(X) = L e
k 1-x, 1-x,°~
1 k
where the sum extends over all k-tuples (iy,..., i) with 1 <i; < -+ <i,<n.

Put

M (n) = sup S,(X).
XEH"

It is not hard to see that M,(n) = (n — 1)~" (D. S. Mitrinovi¢, Analytic Inequali-
ties, Springer, Berlin, 1970, (3.2.46) on p. 214).
(a) Show that M,(n) = 1.
(b) Show that M,(4) = 4/27.
*(c) For what pairs k, n with 3 < k < n is it true that M, (n) = (:)(n —1)7*%2
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E 3264. Proposed by Stanley Rabinowitz, Alliant Computer Systems Corp, Little-
ton, MA.

Let P,/Q, be the nth convergent for the continued fraction
1 1 1 1

1+2+3+4+
ie,let P,=1,0,=1 P,=2 Q,=3, and

’

Pn=nPn—1+Pn—2’ annQn—l+Qn—2 (n> 3)

(Cf. Hardy and Wright, An Introduction to the Theory of Numbers, Chapter 10.)
Give asymptotic estimates for P, and Q,,.

SOLUTIONS OF ELEMENTARY PROBLEMS
Maximal Minimal Card Shufflings

E 3143 [1986, 299]. Proposed by Allen J. Schwenk, Western Michigan University,
Kalamazoo, MI.

A riffle shuffle of a deck of cards is the commonly used technique of cutting the
deck into two portions (not necessarily equal), then, elevating the corners slightly,
allowing each portion to fall card by card (not necessarily alternating) merging with
the other portion, and finally pushing them together to reconstitute the pack. Given
a deck of n cards in arbitrarily permuted order =, determine as a function of 7 the
minimum number of riffle shuffles that could possibly produce the identity se-
quence 1,2,..., n. Describe a procedure that attains this minimum. Which original
sequences require the most shuffles?

Solution by the proposer. For the permutation = = a,, ..., a,, let a descent be a
position j such that a, > a . By convention, we always consider position n to be
a descent; thus the identity permutation is the only sequence with 1 descent. We
show that the minimum number of shuffles required is [log,d ()], where d() is
the total number of descents in 7.

By partitioning the sequence = at the descent positions, we may view 7 as
consisting of d = d(=) blocks By,..., B, that are strictly increasing. Now perform
a riffle shuffle by cutting the deck after the block B, ,, and merging the two
portions so that block B, merges with block B, ., to form a new increasing block
C, for each j <|d/2] If d is odd, the last block B, ,, is unaltered. Thus, one
shuffle transforms 7 to a sequence with [d/2] descents, and iterating this procedure
produces the identity permutation after [log,d ()] shuffles.

On the other hand, any cut of the original deck leaves at least [d/2] descents in
one portion of the deck, and merging cannot reduce this number. By induction on
d, at least [log,d(7)] shuffles are needed to complete the job, so [log,d(=)] are
needed for a sequence with 4 descents.

The maximum required number of shuffles is k = [log,#n |, and the permutations
requiring this many shuffles are those with more than 2~ ! descents.

Also solved by K. Schilling and by L. Szuecs.
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Generating Sets in a Topological Space

E 3144 [1986, 299]. Proposed by Edwin Buchman, California State University,
Fullerton, CA.

Determine the maximum number of sets in a topological space which can be
generated from one set by application (possibly repeated, in any order) of the
operations of taking the complement, interior, and boundary of a set.

Solution by Jesus Ferrer, Cami Collado, Oliva (Valencia), Spain. At most 34
different sets can be constructed from one set by repeatedly taking the complement,
interior, or boundary. Let A’, A°, 4* denote the complement, interior, and boundary
of a set 4. Then the 34 sets that can be constructed appear in the following tree.

A A* A** A**/
A*0 A*0* A*O*'
A*O/ A*O/O A*O/O/
A*
AO AO* AO*/
AO/ AO/O AO/O* AO/O*/

AO/O/ AO/O/O AO/O/O/
A/ A/O AIO* A/O*O A/O*O/
A/O*/
A/O/ A/O/O A/O/O* A/OrO*/
170,07 10,070 7070707
A A A

The lack of additional sets follows from A* = A% N A% A" = A* A4*'° =
A*’, A**O ___ﬂ =AO*O, A 0% =A0*, A/0/0/0/0=A/0/0, AO/O/O/O=A0/O, A707070%
ArO/O*, AO/O/O* =AO/O*, A*O/O'():A*O, A*O/O* =A*O*, AFFE = gx%  Algo A/O*O:
@ and A"°*0 = X,

To see that the number 34 cannot be reduced, let X be the real numbers with the
usual topology, and let @ be the rationals. Then all 34 sets are distinct when A4 is
the set

A4=1[0,1) U (1,2) U {3} U (Q N [4,0)).

Editorial comment. This problem is very similar to Advanced Problem 5996, [1974, 1034; 1978, 283].
That problem asks the same question for {closure, interior, union}, the answer being that at most 13
distinct sets can be constructed (see also Closure, interior, and union in finite topological spaces, Collog.
Math., 38 (1977) 41-51, by L. E. Moser). Kuratowski showed that at most 14 distinct sets can be
constructed using {closure, interior, complement} (see Sur I'opération A de I'analyses situs, Fund. Math.,
3 (1922) 182-199.

Also solved by M. Bowron, J. Hook, O. P. Lossers (Netherlands), O. Matous (Czechoslovakia), W. D.
Mclntosh, L. F. Meyers, R. Patenaude, J. P. Robertson, and the proposer.
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An Integral of Cosines

E 3145 [1986, 299]. Proposed by Clinton J. Kolaski, University of Minnesota,
Duluth.

Show that

X = (n=0,1,2,...).

fw COS nX — COS hy 4 sin ny
0 COSX — COS y sin y

Solution I by W. O. Egerland and C. E. Hansen, University of Baltimore. Put

COS nX — COS ny
flx,y) = ————

COS X — COS y
for n =0,1,2,... and (x, y) € R Since there is a polynomial 7}, of degree n such
that cos nf = T, (cos @), it follows that f,(x, y) may be expressed as a polynomial
in cos x and cos y of degree n — 1. Clearly f,(x, y) =0, fi(x, ) =1, f,(x, y) =
2cos y + 2cos x. The addition formula for the cosine immediately gives

2cos nx cos X — 2CoS ny cos y

fn+1(X, y) + fn——l(x7 y) =

COS X — COS y (1)
=2cosnx + 2f,(x, y)cos y
for n = 1,2,... . In view of the identity
sin(r + 1)y + sin(r — 1)y = 2sin rycos y,

a straightforward induction argument shows that the recurrence (1) and the above
initial values of f,(x, y) imply the following explicit formula

sin n nol sin(n — k
f.(x,y) = — y+22coskx——(—,—)1 (n=2,3,...). (2)
sin y k=1 sy
Thus for fixed y we have the indefinite integral
sin n n=1 gin kx sin(n — k
ffn(x,y)dx=x y+22 ( )y (n=2,3,...). (3)

sin y o1 K sin y

The result of the problem follows.

Solution II by Kwang Kyu Park, Korea Advanced Institute of Science and
Technology, Seoul, Korea. The following formulas are well known

i 1 —rcosx ( 1) (4)
n, = < N
n=0r S X = I 2rcosx + 12 "1
T dx T
- <1), 5
-/(.) 1—2rcosx+r2 1—r2 (Ir] ) (5)
el ) rsin y
Y, risinny = ————— (Ir] <1). (6)

o 1—2cosy+ r?
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Since
COS X — COS Ny

COS X — COS y
for (x, y) € R?, the series

X COS nx — COS ny
rn

o COSX — COSy

converges uniformly in x, y provided |r| < 1. Thus, if |r| < 1, we have by (4)

© 7 COS X — COS ny
o Lo
n=0 0

COS X — COS y

n X COS nx — COS ny
[ xRS
0

n—o COSX — COSy

w{ 1 —rcosx 1 —rcosy } dx
0

1—-2rcosx+r* 1—2rcosy+r%fcosx — cosy

n r—r? dx
L 1—2rcosy +r*1—2rcosx + r?’
Using (5) and (6) in turn, we obtain

7 COS NX — COS Ny r—r? 7 ®  sin ny

0
)y r"f ———dx = '”
n=0 0

COS X — COS y 1—-2rcosy+r*1—r> [T, siny

r"

Comparing coefficients of r”, we get the desired formula.

Solution III by Kee-wai Lau, Hong Kong. Denote the integral of the problem by
I,. Substituting z = e’* we have

dx = —i

7 COS NX — COS ny 2"+ z7 "= (e" + e M) dz
21 =f - 7 f — —
—m COSX — COS y c z+zt—(eV+e ) =z

n ’

where c is the positive orientation of the unit circle. It follows that

" — einy " — e~ ) dz
oty 1] ) ) d:

" e (z—e?)(z—e) 2"

n n
_if Z gn—kpi(k=1)y Z gn=re=ir=D)y,=n g,
Cl=1 r=1

The coefficient of z~! in the last integrand is

n n
Z ei(k—l)ye—i(n—k)y — e—(n+l)iy Z e2k1y.
k=1 k=1

By the residue theorem I, = # sin ny/sin y if y is not an integral multiple of 7 and
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I, = na(=1)""*Dif y = ma. This calculation could also be carried out in terms
of the original variable of integration x, using the orthogonality of the functions
e (n=0,+1,+2,...) over [—, 7] instead of the residue theorem.

Editorial Comment. S. K. Ntouyan and Hang-Fai Yeung (Australia) each pointed out that the
indefinite integral (3) occurs as a problem on page 205 of Joseph Edwards, 4 Treatise of the Integral
Calculus, Volume 1, Macmillan, London, 1921. Edwards attributes (3) to Hermite.

Integrating (1) (with respect to x) over [—m, 7] gives

I,y —2Lcosy+ 1, ; =0.

Most solvers based their solutions on this recurrence formula and the initial values 7, = 0 and I, = ,
using either mathematical induction or the theory of second-order linear difference equations with
constant coefficients. M. S. Klamkin, Morris Morduchow, and R. A. Struble observed that this method of
solving the problem occurs explicitly on pages 92-93 of H. Glauert, The Elements of Aeroforl and
Airscrew Theory, Cambridge University Press, Cambridge, 1947, and on page 80 of L. M. Milne-Thom-
son, Theoretical Aerodynamics, Macmillan, London, 1952.

If A is any positive real number and 0 < y < 7, the quotient

COSAx — COS Ay B sin{A(x +y)/2}sin{\(x — y)/2}

COS X — COS y sin{(x + y)/2}sin{(x — y)/2}

is bounded for 0 < x < 7 and thus the integral

7 COSAX — COS Ay
Lo [ty
0

COS X — COS y

exists. In Siam Review 24 (1982), 83-85, Solution of Problem 81-5, J. A. Boa shows that

msindy  2sinAr 2 (—1)"sin(n + 1)y
sin y sin y —0 n+A+1

n

If A is rational, the series here can be summed in finite form. Cf. also Siam Review, 29 (1987) 303-305,
Solution of Problem 86-10.

Solved also by 35 other readers and the proposer.

The Countable Co-countable Algebra

E 3147 [1986, 400]. Proposed by A. Wilansky, Lehigh University, Bethlehem, PA.

Let (X, B, p) be a measure space such that all singletons are measurable. Let
f(x) = p({x}). Must f be measurable?

Solution by G. Turnwald, Mathematisches Institut der Universitt, Tiibingen, West
Germany. The answer is No. Let X be the disjoint union of uncountable sets X, and
X,, and let B be the o-algebra of subsets 4 of X such that 4 or X — A is countable.
Let p(A4) = |4 N X,|,if 4 N X is finite, and otherwise p(A4) = oo. Since f(x) = 1

on X, and f(x)=0on X,, f~'(1) and f '(0) are uncountable. Hence f is not
measurable.

Editorial comment. Several solvers noted that the answer is Yes if p( X) is finite, since then f(x)=0
except on a countable set, which implies the measurability of f.
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Also solved by J. Ferrer (Spain), J. A. Goldstein, E. Hertz, A. A. Jagers (Netherlands), D. H. King, R.
Levy, J. Ling and P. G. Walsh (Canada), O. P. Lossers (Netherlands), L. A. Lucas, D. Neuenschwander
(student, Switzerland), Oxford Running Club (University of Mississippi), V. Pambuccian (Romania), E.
Posti (Finland), D. Ramachandran, R. H. Scissors, A. V. Stanoyevitch, J. C. Tripp, and the proposer.

Matching Socks

E 3148 [1986, 400]. Proposed by Rick Luttmann, Sonoma State University,
Rohnert Park, CA.

Let n distinct pairs of socks be put into the laundry. (It is assumed that each of
the 2n socks has precisely one mate.) When the laundry is returned, the socks are
drawn out one at a time. Each is matched with its mate, if the mate has previously
been drawn. Find a formula for the expected number E (k) of pairs formed after k
socks have been drawn.

Solution I by K. Grinbaum and S. Pedersen, Copenhagen V., Denmark. The
probability that the ith and jth socks form a matching pair is 1/(2n — 1). For
1<i<j<k, let X,;=1if they match, else X, = 0. Then the number of pairs
drawn is X,_, . ., X, so the expectation E(k) is EXX,)=LE(X,) =
(4)/@n = 1).

Solution Il by Mark Bowron, Lynnwood, WA. The probability that pair / is
present among the first k& socks is (2” 22)/( 2/") Let Y, = 1 if pair i is present, else
= 0. Then the number of pairs present is ©"_,Y,, and the expectation is

E(Z7,) = $E) = (207 2) /() = sk - 1)/Gn - .

Solution III by Richard A. Groeneveld, Iowa State University, Ames. Let X, be
the number of pairs contained in the first k& socks. Let Y, ., = 1 if the k + 1st sock
matches a previously drawn sock, else Y, ., = 0. The conditional probability is
Rr(Y, ., = 1|1X,) = (k — 2X,)/(2n — k). The conditional expectation is
E(X, 11X = E(X, + Y 1|1 X)) = X + (k= 2X,)/@2n — k), which implies
E(k+1)=E(k)+ (k—2E(k))/2n — k). The recurrence, with initial condition
E(1) = 0, is easily solved to obtain E(k) = 3k(k — 1)/(2n — 1).

Editorial comments. Several readers computed the full probability distribution for the number of pairs
present among the first k socks and then computed the expectation of that directly. Several readers
generalized the problem to r-legged beings, for r > 2. More generally, if we have n sets of socks from

creatures with a,, a,,...,a, legs respectively, D. E. Knuth remarked that the expected number of
complete sets of matching socks after k socks have been drawn at random is

where s = a; + a, + -+ +a,. Many commented that this problem illustrates the power of the linearity
of the expectation over dependent random variables, as used in all solutions above. R. W. van der Waall
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(Netherlands) pointed out that for even k the problem (with three solutions) appeared in Dutch in
Nieuw Archief voor Wiskunde, Series 3, 15 (1967), 8687 (problem 123).
Solved by 42 readers and the proposer. Partially solved by two others.

An Exponential Inequality

E 3151 [1986, 401]. Proposed by Peter Ivady, Institute for Economy and Organiza-
tion, Budapest, Hungary.

Let x>0, x# 1, A > 1 and 0 < 8 < 2 be real numbers. Prove that
xM=1\# xM -1
SN — .
x—1 xf -1
Solution by M. S. Klamkin, University of Alberta. Replacing x by 1/x leaves the
inequality unchanged, so it suffices to consider only x > 1 (it is trivial for x = 0).

Because (e — 1)/(e?4" — 1) = (e*%'/e%") - (sinh Aat/sinh at), the hyperbolic
substitution x = e?’ converts the inequality to
sinh A B¢ sinh St
=
sinhPA¢ sinh#t
fort>0,A>1,and2> B> 0.

Equation (1) holds with equality for A = 1, so it suffices to show that the left side
is a nondecreasing function of A, or equivalently that its logarithmic derivative with
respect to A is non-negative, i.e., (1/\) + B¢ coth ARt — Bt coth At > 0. By multi-
plying through by A sinh Az - sinh AB¢ and using the addition formula for sinh, we
transform this inequality into

(1)

sinh Az sinh ABt > ABt sinh A¢(B — 1). (2)

Since sinh is negative for negative arguments, (2) holds for 1 > 8 > 0, and we
need only consider 2 > B > 1. At 8 = 2, (2) reduces to (sinh Ar)(sinh2Az — 2Ar) >
0, which follows from sinh y > y for y > 0. To establish (2) for 2 > B8 > 1, it
suffices to show that the logarithmic derivative of the left side with respect to 8 is
less than that of the right side. This reduces to showing

At 1 At
—_— <= ———————.
tanhABr ~ B  tanh At(B —1)
This follows immediately from the fact that tanh is an increasing function.

Also solved by E. Grosswald, V. Pambuccian (Romania), R. E. Shafer, and the proposer.

Partitioning a Collection of Infinite Sets

E 3152 [1986, 401]. Proposed by Leopoldo Nachbin, University of Rochester,
Rochester, NY.

Let S be a collection of infinite sets. Consider the following partition property
(PTP): For every X € S, infinite subsets Y, C X can be assigned such that
Yy N Yy, = @ if X;, X, € § are distinct. Prove that
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1) S has property (PTP) if it is countable;
2) For every uncountable cardinal number N, there is some S whose power is N,
but which fails to have property (PTP).

Solution by Kenneth Schilling, University of Michigan, Flint. (1) Suppose that
S = {X;: i €N}, where N denotes the natural numbers. Let (p;: i € N) be an
enumeration of N X N. We now choose elements y, € U X, recursively. If p, =
(m, n), let y, be any element of X,, other than y,, y;,..., y,_;. Finally, for m € N,
let Yy = {y: p;= (m,n) for some n € N}. Since p, runs through all of N X N,
each set Yy is countably infinite, and by construction the sets Yy are disjoint for
distinct X, € S.

(2) Let S be any uncountable collection of infinite sets, uncountably many of
which are subsets of N. Then if sets Y, X € S, exist as stated in the problem (even
if the condition “Yy infinite” is weakened to “Y, nonempty”), then U({Y,:
X C N, X €S} must be uncountable. Since this set is a subset of N, this is
impossible.

Editorial comment. Problems like (1) are discussed in great generality by P. Erdds, F. Galvin, and R.
Rado in “Transversals and multitransversals”, J. London Math. Soc. (2) 20 (1979) 387-395. See also W.
Sierpinski, Cardinal and Ordinal Numbers, p. 459. Assertion (2) is equivalent to a restatement of the

theorem on p. 95 of Paul Alexandroff et Paul Urysohn, “Mémoire sur les espaces topologiques
compacts,” Verhandelingen Kon. Adad. Wetensch. Amsterdam, 14 (1929) No. 1.

Also solved by R. E. Bernstein, R. Gilmer, S. Gudder and J. Hagler, Humboldt State Univ. Problem
Group, T. Jager, R. Levy, O. P. Lossers (Netherlands), O. Matou§ (Czechoslovakia), E. Mendelson, Univ.
of Newcastle Problem Solving Class (Australia), V. Pambuccian (Romania), A. K. Wayman and L. Janos,
and the referee.

ADVANCED PROBLEMS

For instructions about submitting solutions of Problems, which should be mailed before August 31,
1988, see the inside front cover. Please place the solver’s name and mailing address on each
(double-spaced) sheet. Include a self-addressed card or label if an acknowledgment is desired.

6570. Proposed by L. A. Rubel, University of Illinois at Urbana-Champaign.

(a) Let (z,) and (z},) be sequences in C, neither with a finite limit point. Assume
that if a complex number w occurs exactly k times in (z,) where k > 1, then it
occurs exactly k — 1 times in (z/). (Subject to this restriction, we allow finite or
even empty sequences.) Show that there exists an entire function f such that the
zeros of f are exactly at the points of (z,) and the zeros of f’ are exactly at the
points of (z;), with the proper multiplicity in each case.

(b) Can one similarly prescribe three sequences (z,),(z,), (z;’) with correspond-
ing assertions about the zeros of f, f’, and f’?

6571. Proposed by Glenn Ierley, Michigan Technological University, Houghton, M1.

(a) Let A(n) be the maximum area of a polygon with #n sides of lengths
1,2,...,n, where n > 4. It is known that the maximum area occurs for a polygon
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inscribed in a circle. (Cf. G. Polya, Mathematics and Plausible Reasoning, Volume 1,
Princeton, 1954, pp. 174-177.) Let B(n) be the area of a regular polygon with n
sides and perimeter 1 + 2 + --- +n. Prove that

A(n)  #?

1- -~
B(n)  3n?

(n—> o).

(b) For 1/2 < g <1 let A(q, n) be the maximum area of a polygon with » sides
of lengths 1, ¢, ¢2,..., ¢"~", respectively, where n is large enough so that ¢ + g2
+ -+ +4""' > 1. Let B(q, n) be the area of a regular polygon with n sides and
perimeter 1 + ¢ + g>+ --- +¢""%. Prove that c(q) = lim,_ A(q, n)/B(q, n)
exists and find

. 1-c(q)
llm *2.
=1 (1 -gq)

SOLUTIONS OF ADVANCED PROBLEMS
Persistence of a Distribution Function

6522 [1986, 485]. Proposed by Gunnar Blom, University of Lund and Lund
Institute of Technology, Sweden.

Let X;, X,,... be an infinite sequence of independent random variables with the
common continuous distribution function F. Let X, be the first variable that is less
than exactly one of all its predecessors Xj,..., X,,_;. Determine the distribution
function of X,,.

Solution by Robert B. Israel, University of British Columbia, Vancouver, BC,
Canada. The distribution function of X, is F. In fact, for any positive integer m
this statement is true if “exactly one” is replaced by “exactly m”.

For any k > m, the probability that X, is less than exactly m of iis predecessors
is 1/k (since X, is equally likely to be the first, second, ..., kth order statistic).
Note that this is independent of the ordering of X,,..., X,_, among themselves.
Thus the probability that X, is the first one less than exactly m of its predecessors
is

P(X":XN):(l_mil)(l—miz)”.(l_kil)%zk(km—l)'

Since the set of values of a given set of i.i.d. random variables is independent of
the order in which they occur, the conditional distribution of X, given X, = X, is
the distribution of the (k — m)th order statistic for X, ..., X,. Namely, for any x,
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if P(X,<x)=p,and g=1 — p, then

2k _
P(Xy<x|Xy=X)= ) (j)p" ‘g
j=0

so that
POtsx) = L e T (K)o
<x)= —_— Sp gl

N k=m+1 k(k - 1) j=0 J
Write this as R, in order to make the dependence on m explicit. We shall prove by
induction on m that R,, = p. Note that the series converges absolutely for0 < p < 1.
First consider the case m = 1 (which is the problem as stated). We have
0

1
Ri= Y (P + kg
1 k=2k(k__1)( )

1

- Lt o)

0 k—1 k
p p
R
o\ k=1 k
Now suppose that R, _; = p. We have
m 1 m—1 m . el m
Rm= Rm— - 7 Z ( ')pm_qu+ Z __—(k)Pk—mqm’
m—=1""" m-1 Z\J i k(= 1)\m

where the sum over j comprises the terms for k = m that are present in R,,_, but
not in R, and the sum over k comprises the terms for j = m that are present in

R, butnot R,,_,. Now

m—1

m —JJ m m m
)y (j)p’" g/ =(p+a)"—q"=1-4¢
j=0
while
i m © (i+m-2)
Z (k)pkfmqm= qmz : px
w1 k(k—1)\m o it(m = 1)
q” 1
= m—1)=——=(¢9g—q").
— (4 )= —(a-4q")
(Here we have used the binomial series
© (i+n)! ien
r p=01-p) """
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which converges for |p| < 1; for p = 1 the formula is trivial.) Thus

R m 1 (
— _ _ m+
m= 1P~ 7 q")

(g—q™)=p
m—1
as required.

The above generalization of 6522 was also proved by Barthel W. Huff, Eugene
Salamin, and Glenn A. Stoops. Both Marcel F. Neuts and the proposer remark that
it is sufficient to establish the result for the case in which F is the uniform
distribution on (0, 1). The proposer (who also provided a solution for m = 1 based
on order statistics) used this to provide a noncalculational argument, based on the
notion of “records,” for the truth of the result. He adds that the result exists in the
literature on “records” and is implicit in a paper of Charles M. Goldie and L. C. G.
Rogers, The k-record Processes are i.i.d., Z. fiir Wahrscheinlichkeitstheorie, 67
(1984) 197-211.

Neuts added the following remark to his solution. “This result is quite remark-
able. It shows that the distribution of the first near-record X, is the same as that of
the underlying random variables. This would be very difficult to infer, for example,
from simulation runs. Because of the heavy tail of the distribution of N, the
empirical distribution of X,, over many replicated runs may be expected to converge
only very slowly to F.”

Also solved by Thomas N. Delmer, Ellen Hertz, James M. Meehan, G. S. Rogers, Kenneth Schilling,
David G. Weinman, Western Maryland College Problems Group, and Douglas P. Wiens (Canada).
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Applied and Computational Complex Analysis. By Peter Henrici. Wiley-Interscience,
1986. vii 637 pp.

Louls AUSLANDER
Department of Mathematics, The Graduate School and University Center,
The City University of New York, New York, NY 10036

This book is not a “textbook” in the ordinary sense of the word. The usual
textbook is something that is trying to be all things to all people. The late Professor
Henrici has written a book that is the distillation of his life’s work as a scholar and
research mathematician. The book is a lively and lovely piece of work and, like any
truly interesting creation, it is full of tensions and contradictions.

The fact that there is a section on digital signal processing, in a book whose last
chapter contains a proof of the Bieberbach Conjecture, may suggest that the author
has made a rather eclectic choice of topics, but the flow of ideas is very orderly. The
presentation of material is rigorous, but the author avoids overburdening the reader
by choosing hypotheses for his results that are weak enough for many practical
problems, yet strong enough to yield accessible proofs. This is strikingly demon-
strated in his discussion of Cauchy integrals in section 14.1 and the results of
Calderon discussed in the notes at the end of the section. There are many existential
results, but care is taken to ensure effective computation methods. For instance, in
Professor Henrici’s discussion in § 14.6, entitled “ Cauchy Integrals on Straight Line
Segments,” he arrives at Theorem 14.6a. This is immediately followed by the
statement that “Theorem 14.6a does not express what from a numerical point of
view may be its most significant aspect.” Professor Henrici then reformulates
Theorem 14.6a as Algorithm 14.6b, which provides a numerical method for carrying
out a desired calculation.

In the Introduction, he states:

Authors who primarily write for professional mathematicians may cultivate a style where a
large number of facts are presented as concisely and economically as possible. However, the
present work is not directed exclusively, and perhaps not even primarily, toward such mathemati-
cians. A lifelong career in teaching this kind of reader has convinced me that, however great their
appreciation for the logical coherence of the subject, their even greater concern is why they should
be interested in it. Thus, time and again, I have allotted valuable space to the task of motivating
what is ahead. Moreover, whenever facts or “theorems” are stated—and there are plenty of these
—1I have endeavored to find formulations that in their essence are intelligible also to readers who
did not memorize all the preceding definitions. If I am accused of wordiness and of being, on
occasion, repetitive, this is the price I must pay for attempting to reach a larger audience.

The final contradiction is that this book is, in my opinion, admirably suited for
educating mathematicians.

An Outline of Set Theory. By James M. Henle. Problem Books in Mathematics,
Springer-Verlag, New York, 1986, viii + 145 pp.

C. SMORYNSKI
Mathematics Institute, Rijksuniversiteit te Utrecht, 3508 TA Utrecht, Netherlands

That there is something wrong with the present teaching of mathematics is
indisputable. Controversy arises when one tries to pinpoint exactly what is wrong,
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and it intensifies when blame is apportioned or panaceas are offered. However,
there are points upon which agreement can be had—particularly if the points are
sufficiently blunted and they are not fingers of blame.

What can we agree on? Mathematical education in its broadest form is a failure:
the average educated person is unaware that mathematics is still alive, that it is not
the case that all mathematical discoveries were made long ago. At the 1986
International Congress of Mathematicians, the winners of the Fields Medals and the
Nevanlinna Prize were asked by reporters about the use of the computer in their
work, never imagining that the computer is a businessman’s rather than a mathema-
tician’s tool (even though they correctly perceived what some mathematicians have
not, that the computer is mathematical in nature). This ignorance is a matter of
miseducation. Partly it is caused by the ignorance of the teachers (high school
mathematics teachers generally receive their degrees in education and learn less
mathematics than mathematics majors, usually very little modern mathematics), and
partly by the textbooks: it has often been remarked how textbooks in the sciences
include some history, while college calculus books, generally the only mathematics
texts to include any history, only have a few biographical remarks ranging in length
from footnotes to half-page paragraphs.

The mathematical training of mathematicians and engineers could also be
improved. Twenty years ago a course in the calculus supplied the equivalent of
mathematical maturity, the appropriate prerequisite to upper division course work.
Since then, the calculus textbooks have been diluted by the elimination of proofs,
the labelling as optional of all conceptual material, and the encouragement of
passivity on the part of the student by providing ready-made reviews with boxed
formulae. Linear algebra is now supposed to provide the bridge between the
calculus and higher mathematics, but I see linear algebra texts (as well as texts on
differential equations) being produced by the same visionless authors with the same
panoply of brain-softening “aids” to students— the cancer is spreading.

Progressing yet farther away from any point of common agreement, I will even
say that there is something wrong with education in higher mathematics. The
“Definition-Theorem-Proof” style of textbook writing is the most efficient means of
transmitting a large quantity of information and it should not be lightly discarded.
In a classroom, the dead facts can be brought to life by an informed instructor. But
what happens if the instructor himself was textbook trained? He will not be able to
bring the artifacts to life, because they are as much artifacts to him as they are to his
students. And what will the textbooks such an instructor writes look like?

How do we breathe new life into the teaching of mathematics? There are two
proposals crystalizing in the pedagogic vapours. First there is Harold Edwards’
exhortation to “Read the Masters” and his guidebooks for those wishing to do so.
At the other extreme is the philosophy of letting the students “discover” for
themselves, a philosophy inherent in Springer-Verlag’s new series Problem Books in
Mathematics. Both proposals work, but I am not equally satisfied with their
workings. Whereas I can sing lofty paeans to Edwards and his achievements, I can
only caution against putting too much faith in problems courses and the readily
misapplied Moore method: For, the life these latter breathe into the subject is not
the real thing, but an artificial life like Frankenstein’s monster and, however much
sympathy the monster may evoke, it is yet a teratological creation lacking a soul.
James Henle’s An Outline of Set Theory exemplifies this poverty of spirit.
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Consider the actual historical development of set theory. Working on the
uniqueness of Fourier series, Georg Cantor obtained his results first for series
convergent at all points, then for series convergent at all but finitely many
exceptional points, and finally for series with infinitely many nicely distributed
exceptional points. The introduction of ordinal numbers was necessary for a
definition of “nicely distributed” and Cantor’s research changed directions. For this
he drew fire from Leopold Kronecker.

The seemingly tiny fact that the cardinality of the real plane is the same as that
of the real line is not so tiny when one considers it in its historical context: to
Cantor, one-dimensional and two-dimensional space were two distinct objects and,
despite his attempt to prove their dissimilarity, he actually proved them to be
virtually the same! In a letter to Richard Dedekind about his construction of a
one-one correspondence between the unit interval and the unit square, Cantor wrote
“I see it, but I don’t believe it.” Dedekind replied that dimensionality might still be
a genuine concept: he didn’t think the one-one correspondence could be continuous.
This was in 1874; in 1890 Peano showed that the unit square was a continuous
image of the unit interval. Perhaps the map could be one-one as well. It was not
until 1909 that L. E. J. Brouwer proved the general invariance of dimension.

Set theory explicitly assumed a foundational role around the turn of the century
when Gottlob Frege decided to base all of mathematics on it. Cantor’s theories of
ordinal and cardinal numbers subsumed the arithmetic of the natural numbers, and
both Cantor and Dedekind had set-theoretic constructions of the real numbers from
there. Unfortunately, Frege’s axiomatic system was flawed—as Bertrand Russell
noted. Avoiding the paradoxes was something that worried the philosophers, but it
had little or no effect on mathematics or the development of set theory. Ernst
Zermelo’s axiomatization in 1908 accompanied his second proof of the Well-Order-
ing Theorem from the Axiom of Choice. Zermelo’s first proof had met with much
criticism and he supplied his new proof with an explicit list of axioms used so that it
may be more convincing. About twenty years later, he offered the world the
cumulative hierarchy of sets as an intuitive model of these axioms—actually, of an
improved set of axioms resulting from some fine tuning by Abraham Fraenkel and
Thoralf Skolem. ;

This minihistory of set theory falls a bit short of completeness, but, inadequate as
it is, it does indicate the dynamic life of the subject and the excitement that could be
conveyed to a student with an historically based text, or, at least, a scholarly written
one. It hints at what the potential mathematicians among the students may
experience in their own lifetimes: the unexpected discovery of something interesting,
the incredible surprises and complete reversals of one’s beliefs or intuitions, the
timespan in the solution of problems, the subsumption of one programme by
another, and the slow crystalization of concepts. The mention of Kronecker and the
criticism of Zermelo’s original proof also bring the human element into the story,
both in its destructive and constructive aspects—two aspects that are ever at hand.

Now consider the static picture offered by the problems text. Henle has tried to
go beyond the “Definition-Theorem-Problem” format by prefacing the work with a
35 page introduction including history, philosophy, a statement of intent, and
discussions of his method and bias. He also sprinkles occasional two or three
sentence remarks of a historical or philosophical nature throughout his book. The
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picture he paints can be glimpsed from a few quotes from his history:

Mathematics is a living creature, growing as occasions demand and circumstances permit. Every
now and then it must pause to organize and reflect on what it is and where it comes from. This
happened in the sixth century B.C. when Euclid thought he had derived most of the mathematical
results known at the time from five postulates. By the end of the nineteenth century, it was ready
to happen again... In searching for underlying principles, mathematicians were led naturally to
sets... [mention of Russell's paradox]... Over the decades following the discovery of such
problems, a collection of principles or axioms was formed which appeared (and still appears) to
avoid paradoxes. The system is called Zermelo-Fraenkel set theory or ZF after its originators,
Ernst Zermelo and Abraham Fraenkel. In addition to occupying a strategic location in mathe-
matics, ZF is studied for itself by a growing number of mathematicians. The father of modern set
theory was Georg Cantor.

The story outlined (I have not omitted anything central) is wholly false, but that is
hardly the issue—one of the first corollaries of the general floccinaucinihilipilifica-
tion of scholarship in mathematics is the irrelevance of history. What is at issue is
the one-dimensionality and simplicity (simplistic-icity?) of the artificial life created.
Real life—healthy life—is rich in its complexity; artificial life—like Rabbi Loeb’s
golem or Henle’s history—is unhealthy in its simplicity.

If one concomitant of the problem solver’s perspective is the attitude that history
doesn’t matter—any story will do (but, the simpler the better)—another is the
attitude that the results themselves are not important. Like the fisherman who
doesn’t eat fish, the mathematical problem solver is only out for the hunt. And, the
Great White Hunter leading the safari selects the game suitable for his clients, who
will see but a little of the jungle—or, perhaps, only the savannah and none of the
jungle. This is exactly what happens in the problems course, as is illustrated by An
Outline of Set Theory: nothing is taken very far. Dedekind’s construction of the reals
stops with the definition of 1/r, thus almost but not quite proving the reals to be a
field. The treatment of ordinal exponentiation is given in connexion with the
Goodstein-Kirby-Paris Theorem, a recent “combinatorial independence result”
closely tied to the Cantor Normal Form for ordinals less than &,. Neither &, nor the
normal form are mentioned. Cardinal arithmetic is omitted from the discussion of
cardinals. Etc.

Other than to suggest that he be raked over the coals, or at least flogged, for the
sentence about Euclid, I do not want to attack Prof. Henle for having written an
unscholarly book. In this he has been thoroughly professional. I wish but to attack
this highly professional perspective of mathematics as mere problem solving.
Although some may attribute the lifelessness and shallowness of his book to his
dubious goal of running a problem solving course for average students, I think the
blame lies entirely in the too narrow perspective. An Qutline of Set Theory is a vivid
illustration of the need for something more: To instill some life into our mathe-
matics texts, we also need some scholarship.
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Mathematics Appreciation, T(13: 1). Mathe-
matics in Daily Life: Making Decisions and Solving
Problems. Joanne Simpson Growney. McGraw-Hill,
1986, xxiii + 453 pp, $33.95. [ISBN: 0-07-025015-4]
Covers the use of elementary mathematics, mostly
arithmetic, in problem solving and decision making.
Does not emphasize specific mathematical topics. In-
tended for use in college or university “general educa-
tion” mathematics courses. Could also be of interest
to elementary and secondary school teachers. Alge-
bra is a helpful, but not necessary, prerequisite. Very
easy to read. Includes many exercises varying in level
of difficulty. RH

Education, P, L. Implementation Handbook for
the Comprehensive Mathematics Program. Man-
ford Byrd, Jr. (Board of Education of the City of
Chicago, 1819 W. Pershing Rd., Chicago, IL 60609),
1987, (P). Kindergarten-Grade 3, viii + 154 pp;
Grades 4-6, viii + 191 pp; Grades 7-8, viii + 138
pp. A detailed set of objectives and examples for
each topic to be covered in each reporting period in
grades K-8 in the Chicago public schools. Includes
creative calculator examples, as well as geometry,
data analysis, measurement, and applications in each
grade. LAS ~

History, P, L**. Reminiscences About a Great
Physicist: Paul Adrien Maurice Dirac. Ed: Behram
N. Kursunoglu, Eugene P. Wigner. Cambridge U
Pr, 1987, xviii + 297 pp, $49.50. [ISBN: 0-521-
34013-6] Two dozen reflections by close friends of
Dirac on both scientific and personal associations.
Contributors include his widow Margit Dirac, her
brother Eugene Wigner, P.A.M. Dirac himself (on
the inadequacies of quantum field theory), and many
world-famous physicists such as Harish-Chandra,
Fred Hoyle, and Abdus Salam. LAS

History, S(17), P*. The Historical Development
of Quantum Theory, Volume 5: Erwin Schrodinger
and the Rise of Wave Mechanics, Part 2: The Cre-

ation of Wave Mechanics; Early Response and Appli-
cations 1925-1926. Jagdish Mehra, Helmut Rechen-
berg. Springer-Verlag, 1987, ix + 613 pp, $79.95.
[ISBN: 0-387-96377-4] Wave mechanics began when
Schrédinger showed in his fundamental papers of
1926 that the quantum states of the hydrogen atom
could be represented as an eigenvalue problem for
an appropriate operator. This volume reconstructs
the scientific attitude of this revolutionary period.
Schrddinger’s own thoughts and motivation have al-
ways been obscure due to his lack of correspondence.
The authors attempt to address this by presenting in
detail the contributions of de Broglie, Einstein, and
others along with Schrédinger’s own work. (Part 1,
TR, January 1988.) MR

Foundations, T**(14: 1), S**, L*. Bridge to Ab-
stract Mathematics: Mathematical Proof and Struc-
tures. Ronald P. Morash. Math. Ser. Random
House, 1987, xiii + 395 pp, $24. [ISBN: 0-394-35429-
X] A text for a course which bridges the gap be-
tween beginning courses like calculus and more ad-
vanced courses in which students deal seriously with
mathematical proofs. Topics include sets, logic, ap-
plications of logic, methods of mathematical proof,
relations, functions, and the construction of number
systems. Readable with lots of exercises of varying
difficulty and solutions to selected exercises. CEC

Foundations, P, L. Particles and Paradozes: The
Limits of Quantum Logic. Peter Gibbins. Cam-
bridge U Pr, 1987, xi + 181 pp, $34.50; $11.95 (P).
[ISBN: 0-521-33498-5; 0-521-33691-0] An exposition
and exposé of attempts to intepret the paradoxes of
quantum mechanics (e.g., the twin slit experiment)
via quantum logic. The author holds that quantum
logic—indeed, any logic—is inadequate to the task of
providing a foundation for quantum mechanics. “We
are left with a mystery” of “just how odd the physical
world must be.” LAS

Foundations, T(17-18), S, P, L. Varieties of Con-
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structive Mathematics. Douglas Bridges, Fred Rich-
man. London Math. Soc. Lect. Note Ser., V.
97. Cambridge U Pr, 1987, x + 149 pp, $19.95 (P).
[ISBN: 0-521-31802-5] An introduction to the spirit
and practice of modern constructive mathematics,
requiring a minimal background in philosophy and
formal logic. The book introduces three varieties
of constructive mathematics: Bishop’s constructive
mathematics, Brouwer’s intuitionistic mathematics,
and the constructive recursive mathematics of the
Russian school of Markov. LCL

Combinatorics, T(17-18), P, L. Combinatorial
Geometries. Ed: Neil White. Encycl. of Math. &
Its Applic., V. 29. Cambridge U Pr, 1987, xii + 212
pp, $39.50. [ISBN: 0-521-33339-3] This is volume
twoin a three-volume series on matroid theory. Top-
ics covered include coordinatizations, matching the-
ory, transversed and simplicial matroids, the Mobius
function and combinatorial optimization. Includes
exercises. LC

Number Theory, T*(16-18: 1), S, P, L*. 4
Course in Number Theory and Cryptography. Neal
Koblitz. Grad. Texts in Math., V. 114. Springer-
Verlag, 1987, 208 pp, $34. [ISBN: 0-387-96576-9] A
good introduction to the elementary number theory
and algebra (e.g., finite fields) underlying public-key
cryptosystems, including an exposition of the ellip-
tic curve approach. Unfortunately, the cheap fuzzy
printing is unpleasant to look at. Springer shouldn’t
let this happen in the GTM series. BC

Number Theory, T**(14: 1), S, L*. Elementary
Number Theory. Charles Vanden Eynden. Math.
Ser. Random House, 1987, xii + 266 pp, $27.
(ISBN: 0-394-35359-5] A well-written introduction to
the subject. Extensive exercise sets include many
routine problems as well as a good collection of
theoretical problems. Lots of historical material.
Advanced topics include public key cryptography,
quadratic residues, continued fractions, some dio-
phantine equations, and Pell’s equation. CEC

Linear Algebra, T(i5-17: 1). Applied Linear
Algebra, Third Edition. Ben Noble, James W.
Daniel. Prentice-Hall, 1988, xvi + 521 pp. [ISBN:
0-13-041260-0] Major changes in this edition include
greater emphasis on triangular forms, over 500 new
exercises, and additional material on some topics pre-
viously discussed only in exercises (e.g., the Cayley-
Hamilton and Perron-Frobenius theorems). Some ex-
amples and problems using computer software for nu-
merical linear algebra have also been added. (First
Edition, TR, October 1969; Second Edition, TR,
November 1978.) AO

Linear Algebra, P. Invariant Theory and Superal-
gebras. Frank D. Grosshans, Gian-Carlo Rota, Joel
A. Stein. CBMS Reg. Conf. Ser. in Math., No.
69. AMS, 1987, xxi + 80 pp, $16 (P). [ISBN: 0-
8218-0719-6] A superalgebra is one part symmetric,
one part exterior, and one part “divided powers.”
The authors prove an extension of the “standard ba-
sis theorem,” and apply it to compute invariants of
symmetric and skew-symmetric tensors. Includes a
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very clear and fairly long synopsis, and many exam-
ples. BC

Linear Algebra, T?(13: 1). A First Course in
Linear Algebra with Concurrent Ezamples. A.G.
Hamilton. Cambridge U Pr, 1987, viii + 148 pp,
$39.50; $12.95 (P). [ISBN: 0-521-32516-1; 0-521-
31041-5] Not enough material for a standard course.
Covers solutions to linear equations, linear depen-
dence, determinants through the 3x3 case, and some
three-dimensional geometry. Answers to most exer-
cises in back. GG

Linear Algebra, T*(14: 1, 2), L. Linear Alge-
bra. John B. Fraleigh, Raymond A. Beauregard.
Addison-Wesley, 1987, xv + 519 pp, $35.95. [ISBN:
0-201-15459-5] Includes standard topics: linear sys-
tems, vector spaces and linear transformations, de-
terminants, eigenvalues, and orthogonality, all with
emphasis on R". No Jordan forms. Applications in-
clude computer solutions of linear systems and eigen-
values, least squares, and linear programming. Also
has chapter on calculus applications. Has answers to
odd exercises; software to accompany text available.
Good for course with applied flavor. GG

Linear Algebra, T(16-17: 1), S*, L. Nonnega-
tive Matrices and Applicable Topics in Linear Alge-
bra. Alexander Graham. Math. & Its Applic. Hal-
sted Pr, 1987, 264 pp, $89.95. [ISBN: 0-470-20855-
4] Introduction for general readers, includes back-
ground material (including aspects of graph theory;
unitary, Hermitian, and normal matrices; positive
definite matrices), followed by the main theme of the
book and applications. Important concepts amply il-
lustrated with worked examples and problems (with
solutions). LCL

Group Theory, P. Lecture Notes in Mathematics-
1281: Group Theory. Ed: O.H. Kegel, F. Menegazzo,
G. Zacher. Springer-Verlag, 1987, vii + 179 pp,
$16.30 (P). [ISBN: 0-387-18399-X] A collection of
19 short papers which were presented at the In-
ternational Conference on Group Theory held at
Brixen/Bressanone, Italy, May 25-31, 1986. The pa-
pers consider quite a range of topics; many involve
nilpotent groups and several concern locally finite
groups. LW

Group Theory, S(18), P. Unitary Representa-
tions of Reductive Lie Groups. David A. Vogan,
Jr. Annals of Math. Stud., No. 118. Princeton
U Pr, 1987, x + 308 pp, $60; $19.50 (P). [ISBN:
0-691-08481-5; 0-691-08482-3] General survey based
loosely on January 1986 Hermann Weyl Lectures
given at the Institute for Advanced Study. Introduc-
tion gives excellent perspective. Some proofs omitted
or sketched. GG

Group Theory, P. Essays in Group Theory. Ed:
S.M. Gersten. Math. Sci. Res. Inst., V. 8. Springer-
Verlag, 1987, 342 pp, $32. [ISBN: 0-387-96618-8] A
collection of five papers based on a seminar presented
in 1985 at MSRI, Berkeley. Baumslag and Shalen ex-
amine presentations by the classical method of rep-
resentations; Stalling and Gersten deal with appli-
cations of diagrams to group theory, and Gromov
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and Shalen with hyperbolic groups and actions on R-
trees. The papers are all well-written and free of the
typical terseness of papers appearing in journals. LW
Algebra, T(18: 1, 2), P. Commutator Theory for
Congruence Modular Varieties. Ralph Freese, Ralph
McKenzie. London Math. Soc. Lect. Note Ser.,
V. 125. Cambridge U Pr, 1987, 227 pp, $27.95 (P).
(ISBN: 0-521-34832-3] A development of a theory of
commutators in the setting of congruence modular
varieties. This theory generalizes the notion of the
commutator of a group. Includes many exercises to
solutions and extensive bibliographical notes. SG
Algebra, P. Noetherian Rings and Their Applica-
tions. Ed: Lance W. Small. Math. Surv. & Mono.,
No. 24. AMS, 1987, ix + 118 pp, $38. [ISBN: 0-
8218-1525-3] A collection of six papers (at just over
86 apiece) on such topics as the Goldie rank of a mod-
ule, semisimple Lie algebras, and Noetherian group
rings. SG

Algebra, P. Lecture Notes in Mathematics-1271:
Algebraic Groups, Utrecht 1986. Ed: A.M. Cohen,
et al. Springer-Verlag, 1987, viii + 284 pp, $24.30
(P). [ISBN: 0-387-18234-9] Fourteen papers from the
April 1986 symposium honoring the 350th anniver-
sary of the University of Utrecht and T.A. Springer’s
60th birthday. GG

Algebra, T(14-15: 1). Rings and Factorization.
David Sharpe. Cambridge U Pr, 1987, ix + 111
pp, $14.95 (P); $34.50. [ISBN: 0-521-33718-6; 0-521-
33072-6] A very readable and enjoyable introduction
to the concepts of rings, fields, prime elements, and
unique factorization. Assumes no background in ab-
stract algebra. Includes examples of concrete appli-
cations, such as factoring polynomials and Fermat’s
two-squares theorem. Contains many exercises along
with hints and solutions. A fun and smooth intro-
duction to some abstract mathematical ideas. RH

Algebra, P. Structures Paragraduées (Groupes, An-
neauz, Modules). Marc Krasner, Mirjana Vukovié.
Papers in Pure & Appl. Math., No. 77. Queen’s U,
1987, 163 pp, (P).

Algebra, T*(16: 1, 2), S, L*. Introduction to Ab-
stract Algebra. Elbert A. Walker. Math. Ser. Ran-
dom House, 1987, viii + 355 pp, $30. [ISBN: 0-394-
35611-X] A sophisticated introduction to algebra for
undergraduates. Chapter titles include sets, groups,
vector spaces, rings and modules, linear transforma-
tions, fields, and topics from both group and ring
theory. Includes excellent collections of exercises,
but few of them are routine. Plenty of material for
a year-long course. CEC

Algebra, P. Lecture Notes in Mathematics-1280:
Jordan Triple Systems by the Grid Approach. Er-
hard Neher. Springer-Verlag, 1987, xii + 193 pp,
$20 (P). [ISBN: 0-387-18362-0]

Real Analysis, P. Regular Variation, Eztensions
and Tauberian Theorems. J.L. Geluk, L. de
Haan. CWI Tract, V. 40. Math Centrum, 1987,
132 pp, Dfl. 20.30 (P) [ISBN: 90-6196-324-9] A
self-contained introduction to the theory of regular
variation and its main extensions. It is shown that
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regularly varying functions are a natural setting for
Tauberian theorems of the Laplace type. Also in-
cludes some results for general kernel transforms. In-
cludes references. CEC

Complex Analysis, S(18), P. Lectures on Coun-
terezamples in Several Complez Variables. John Erik
Fornzess, Berit Stensgnes. Math. Notes 33. Prince-
ton U Pr, 1987, 247 pp, $22.50 (P). [ISBN: 0-691-
08456-4] Lecture notes from a graduate course at
Princeton. Begins with a brief introduction to basics
of several complex variables. Topics include coun-
terexamples to smoothing of plurisubharmonic func-
tions, C R-manifolds, Stein neighborhood basis, peak
sets, inner functions, Runge exhaustion. Presented
in a clear, but somewhat informal style. No prob-
lems. BH

Complex Analysis, P. Lecture Notes in Mathemat-
ics-1275, 1276, 1277: Complez Analysis. Ed: Car-
los A. Berenstein. Springer-Verlag, 1987, (P). I, xv
+ 331 pp, $28.60, [ISBN: 0-387-18356-6); I7, ix +
320 pp, $28.60, [ISBN: 0-387-18357-4); III, x + 350
pp, $32.90. [ISBN: 0-387-18355-8] Proceedings of the
sixteenth Special Year at the University of Maryland
from July 1985 to December 1986. A collection of
54 papers on topics from complex analysis, including
both survey articles and new results. RH

Complex Analysis, T*(16-17: 2, 3), L. Complez
Functions: An Algebraic and Geometric Viewpoint.
Gareth A. Jones, David Singerman. Cambridge U
Pr, 1987, xiv + 342 pp, $59.50; $16.95 (P). [ISBN:
0-521-30893-3; 0-521-31366-X] Presents “main ideas
about complex functions and Riemann surfaces” as-
suming only fundamentals of abstract algebra, real
and complex analysis, and topology. Topics are Rie-
mann sphere, Mébius transformations, elliptic func-
tions, analytic continuation and Riemann surfaces,
hyperbolic geometry, and the modular group. Well
motivated with good selection of problems at end of
each chapter. BH

Differential Equations, P. Perturbation Methods,
Bifurcation Theory and Computer Algebra. Richard
H. Rand, Dieter Armbruster. Appl. Math. Sci., V.
65. Springer-Verlag, 1987, ix + 243 pp, $29.80 (P).
[ISBN: 0-387-96589-0] Contains MACSYMA pro-
grams for several popular perturbation methods as
well as methods for studying bifurcations. A brief
introduction to MACSYMA is provided as an ap-
pendix. AO

Differential Equations, P. Ordinary and Partial
Differential Equations. Ed: B.D. Sleeman, R.J.
Jarvis. Longman Scientific & Technical (US Distr:
Wiley), 1987, 216 pp, $48.95 (P). [ISBN: 0-470-
20839-2] Proceedings of the ninth Dundee Confer-
ence, 1986, with fourteen papers by seventeen au-
thors; topics include coherent excitations, one- and
two-parametric bifurcation diagrams, inverse scat-
tering, limit cycle configurations of quadratic sys-
tems, concentration effects in Euler equations, ho-
moclinic orbits and chaos in delay equations, the dis-
crete Nagumo equation, radiation of sound by a mov-
ing sphere, fisheries stock assessment, Cahn-Hilliard
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model of phase transition, second-order elliptic equa-
tions, biHamiltonian systems, applications of differ-
ential equations in biology, and fibered structures in
optimal design. RSF

Differential Equations, T*(16-17: 1, 2). Ap-
plied Mathematics: A Contemporary Approach. J.
David Logan. Wiley, 1987, xviii + 572 pp, $44.95.
[ISBN: 0-471-85083-7] A survey text covering most of
the traditional topics and a few nontraditional ones
as well: dimensional analysis and scaling, perturba-
tion methods, calculus of variations, partial differen-
tial equations of mathematical physics, stability and
bifurcation, similarity methods, and numerical tech-
niques for partial differential equations. AO

Partial Differential Equations, P. Contributions
to Nonlinear Partial Differential Equations, Volume
II. Ed: J.I. Diaz, P.L. Lions. Res. Notes in Math.
Ser., V. 155. Longman Scientific & Technical (US
Distr: Wiley), 1987, 308 pp, $57.95 (P). [ISBN: 0-
470-20810-4] The proceedings of the Second Franco-
Spanish Colloquium on nonlinear partial differential
equations held in Paris in December 1985. CEC

Partial Differential Equations, P. Lecture Notes
in Mathematics-1248: Nonlinear Semigroups, Partial
Differential Equations and Attractors. Ed: T.L. Gill,
W.W. Zachary. Springer-Verlag, 1987, ix + 185 pp,
$18 (P). [ISBN: 0-387-17741-8] This volume consti-
tutes the proceedings of the symposium on nonlin-
ear semigroups, partial differential equations, and at-
tractors held at Howard University in Washington,
D.C. on August 5-8, 1985. CEC

Partial Differential Equations, P. Lecture Notes
in Mathematics-1241: Singularities in Linear Wave
Propagation. Lars Garding. Springer-Verlag, 1987,
125 pp, $13.10 (P). [ISBN: 0-387-18001-X] The aim
of these lectures is to present the use of microlocal
theory in the analysis of singularities in linear wave
propagation. LCL

Partial Differential Equations, P. Hyperbolic
Equations. Ed: F. Colombini, M.K.V. Murthy. Res.
Notes in Math. Ser., V. 158. Longman Scientific &
Technical (US Distr: Wiley), 1987, 286 pp, $51.95
(P). [ISBN: 0-470-20869-4] Proceedings of the con-
ference on Hyperbolic Equations and Related Topics,
University of Padova, 1985. LC

Partial Differential Equations, S(18), P. Vis-
cosity Solutions and Optimal Control. Robert J. El-
liott. Res. Notes in Math. Ser., V. 165. Longman
Scientific & Technical (US Distr: Wiley), 1987, 95
pp, $39.95 (P). [ISBN: 0-470-20918-6] Discusses the
concept of a viscosity solution and its relationship
to a cost/value function of an optimal control prob-
lem or differential game. A viscosity function is any
solution to the Hamilton-Jacobi-Bellman differential
equation. Topics covered include dynamic program-
ming and differential games with alternate, overlap-
ping play. MR

Partial Differential Equations, P. Wave Motion:
Theory, Modelling, and Computation. Ed: Alexan-
dre J. Chorin, Andrew J. Majda. Math. Sci. Res.
Instit., V. 7. Springer-Verlag, 1987, 336 pp, $32.
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[ISBN: 0-387-96594-7] Twelve papers from the pro-
ceedings of a conference given at the Mathemati-
cal Sciences Research Institute, Berkeley, California,
June 1986, in honor of the 60th birthday of Peter
Lax. LCL

Partial Differential Equations, P. The Homotopy
Indez and Partial Differential Equations. Krzysztof
P. Rybakowski. Universitext. Springer-Verlag, 1987,
xii + 208 pp, $39.50 (P). [ISBN: 0-387-18067-2] Ho-
motopy index theory originated on compact spaces.
As usual, the non-compact case is problematic. The
author gives a unified approach, with applications to
partial differential equations and other topics (e.g.,
Morse theory). BC

Numerical Analysis, P. Lecture Notes in Engi-
neering-27: The Best Approzimation Method: An In-
troduction. Th. V. Hromadka II, Ch.-Ch. Yen, G.F.
Pinder. Springer-Verlag, 1987, xiii + 168 pp, $26.70
(P). [ISBN: 0-387-17572-5] A generalized Fourier ex-
pansion method for solving linear operator equa-
tions. Mathematical background in metric spaces
and Lebesgue integration. Application to engineer-
ing problems including computer codes. RWN

Numerical Analysis, P. Algorithms for Approzi-
mation. Ed: J.C. Mason, M.G. Cox. Inst. of Math.
& Its Applic. Conf. Ser., V. 10. Clarendon Pr, 1987,
xvi + 694 pp, $125. [ISBN: 0-19-853612-7] 41 contri-
butions at an international conference held July 15-
19, 1985 at the Royal Military College of Science in
Shrivenham, England. They concern algorithm de-
velopment in spline approximation and smoothing,
spline interpolation and shape preservation, multi-
variate interpolation, least-square methods, ratior:al
approximation, complex and nonlinear approxima-
tion, computer-aided design and blending; applica-
tions in numerical analysis, partial differential equa-
tions, other disciplines; software. DFA

Operator Theory, S(18), P. Summing and Nu-
clear Norms in Banach Space Theory. G.J.O. Jame-
son. Math. Soc. Stud. Texts, V. 8. Cambridge U
Pr, 1987, xi + 174 pp, $39.50; $13.95 (P). [ISBN:
0-521-34134-5; 0-521-34937-0] Assumes basic knowl-
edge of Banach and Hilbert space theory. Main top-
ics are Pietsch’s theorem on p-summing operators
and Grothendieck’s inequality and their applications.
Exercises and numerous examples scattered through-
out. BH

Functional Analysis, T(15: 1). Introduction to
the Analysis of Metric Spaces. J.R. Giles. Aus-
tralian Math. Soc. Lect. Ser., V. 3. Cambridge
U Pr, 1987, xiv + 257 pp, $49.50; $16.95 (P).
[ISBN: 0-521-35051-4; 0-521-35928-7] Follows educa-
tional style of Dieudonné used in British universities:
detailed study of analysis of metric spaces before in-
troducing topological spaces. Normed linear spaces
treated as special subfamily of metric spaces. Very
helpful geometrically-suggestive diagrams. Numer-
ous good exercises at the end of each section. Con-
nectedness, Axiom of Choice not included. MS

Functional Analysis, P. Lecture Notes in Mathe-
matics-1267: Geometrical Aspects of Functional
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Analysis.  Ed: J. Lindenstrauss, V.D. Milman.
Springer-Verlag, 1987, 212 pp, $20 (P). [ISBN: 0-
387-18103-2] Proceedings of the Israel Seminar on
geometric aspects of functional analysis held between
October 1985 and June 1986. Central topic is convex
sets in R™ and infinite-dimensional spaces. BH

Analysis, P. Lecture Notes in Mathematics-1257:
On the C*-Algebras of Foliations in the Plane. Xi-
aolu Wang. Springer-Verlag, 1987, 165 pp, $16.30
(P). [ISBN: 0-387-17903-8] A study of C*-algebras of
foliated open two manifolds, linking topology, graph
theory, geometry, and analysis in an important new
area of research. LCL

Analysis, P. Lecture Notes in Mathematics-1265:
Asymptotics for Orthogonal Polynomials. Walter
Van Assche. Springer-Verlag, 1987, vi + 201 pp,
$20 (P). [ISBN: 0-387-18023-0] A monograph which
concentrates on the asymptotic theory of general or-
thogonal polynomials on the real line. Includes a
substantial list of references. CEC

Analysis, P. A General Theory of Integration in
Function Spaces, Including Wiener and Feynman In-
tegration. P. Muldowney. Res. Notes in Math. Ser.,
V. 153. Longman Scientific & Technical (US Distr:
Wiley), 1986, 115 pp, $34.95 (P). [ISBN: 0-470-
20736-1] Begins with a brief description of Henstock’s
general theory of integration (a simple, but powerful
generalization of Riemann integration), then devel-
ops theory of function space integration in more de-
tail and applies this theory to statistical mechanics
(Wiener integral) and quantum mechanics (Feynman
integral), thus giving a unified treatment of these two
integrals. BH

Analysis, S(18), P, L. Moments in Mathematics.
Ed: Henry J. Landau. Proc. of Symp. in Appl.
Math., V. 37. AMS, 1987, xi + 154 pp, $30. [ISBN:
0-8218-0114-7] Applications and ramifications of the
classical problem of moments (when does a sequence
of numbers represent the successive moments of a
non-negative measure?) to geometry, Hilbert space,
signal processing, semigroups, probability and statis-
tics. Papers from the January 1987 AMS short
course in San Antonio. LAS

Analysis, P. Value Distribution Theory for Mero-
morphic Maps. Wilhelm Stoll. Aspects of Math.,
V. E7. Friedr. Vieweg & Sohn, 1985, xi + 347 pp,
$28 (P). [ISBN: 3-528-08906-7] Generalizes standard
Nevanlinna theory to the following setting: f: M —
P, is a meromorphic map, M is a parabolic manifold
of dimension m, and P, is n-dimensional projective
space. Extensive bibliography. BH

Analysis, T(16-17). Finite-Dimensional Spaces:
Algebra, Geometry, and Analysis, Volume I. Wal-
ter Noll. Mech.: Analy., V. 10. Martinus Nijhoff
(US Distr: Kluwer Academic), 1987, xvi + 393 pp,
$97.50. [ISBN: 90-247-3581-5] Based on a course
originally entitled “Tensor Analysis” and then re-
named “Multidimensional Algebra, Geometry, and
Analysis,” the text attempts to unify these topics
and “to present mathematics as a whole.” The pre-
requisites for a student are courses in abstract al-
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gebra, real analysis, and linear algebra. The top-
ics covered include: dual, flat (affine), and inner-
product spaces; basic point-set topology; basic dif-
ferential calculus; spectral theory (concentrating on
finite-dimensional spaces); and the structure of linear
transformations. Each of the ten chapters is followed
by a problem set. LW

Algebraic Geometry, S(18), P. Géométrie
algébrique réelle. J. Bochnak, M. Coste, M-F. Roy.
Ser. of Mod. Surv. in Math., Band 12. Springer-
Verlag, 1987, x + 373 pp, $118.30. [ISBN: 0-387-
16951-2] If you want to make algebraic geometry re-
ally complex, do it over R, not C. BC

Differential Geometry, T(18: 1), S*, P*. Te-
ichmiller Theory and Quadratic Differentials. Fred-
erick P. Gardiner. Wiley, 1987, xvii + 236 pp, $46.95.
[ISBN: 0-471-84539-6] Treats the moduli space of
inequivalent Riemann surface structures on a given
topological surface. Full proofs and exercises make
the book self-contained for a reader with knowl-
edge of a few topics beyond the basics of complex
variables, differential geometry, and algebraic topol-
ogy. GG

Geometry, S, L**. A Budget of Trisections. Un-
derwood Dudley. Springer-Verlag, 1987, xv 4 169
pp, $29.80. [ISBN: 0-387-96568-8] A witty, compas-
sionate, and richly personal account of the count-
less amateur mathematical Don Quixotes who pur-
sue their dream of trisecting angles. Echoing De
Morgan’s 1872 A Budget of Paradozes, Dudley de-
scribes the trisectors and their trisections, showing
that despite their ignorance of advanced mathemat-
ics, trisectors are often solid citizens who through
clever persistence produce some very good approxi-
mations. LAS

Geometry, T(17-18: 2, 3), S, P. Algorithms
in Combinatorial Geometry. Herbert Edelsbrunner.
EATCS Mono. on Theor. Comput. Sci., V. 10.
Springer-Verlag, 1987, xv + 423 pp, $49. [ISBN:
0-387-13722-X] Despite its title, this book offers an
extensive introduction to combinatorial geometry,
generally, and to its correlative field, computational
geometry, before treating geometric algorithms and
their applications. Exercises, research problems, and
up-to-date bibliography. SS

Geometry, P. Intuitive Geometry. Ed: K.
Béréczky, G. Fejes Téth. Colloquia Mathematica So-
cietatis Janos Bolyai, V. 48. Elsevier Science, 1987,
708 pp, Dfl. 295. [ISBN: 0-444-879-33-1] Assortment
of research papers on convexity, discrete and combi-
natorial geometries, and relations between geometry
and other fields: biology, architecture, art, and psy-
chology. SS

Algebraic Topology, P. Lecture Notes in Mathe-
matics-1274: Equivariant K-Theory and Freeness of
Group Actions on C*-Algebras. N. Christopher
Phillips. Springer-Verlag, 1987, viii + 371 pp, $32.90
(P). [ISBN: 0-387-18277-2] Given an action of a
compact Lie group on a compact Hausdorff space,
an examination of the equivariant K-theory reveals
whether this group action is free. The category of
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compact Hausdorff spaces is (contravariantly) equiv-
alent to the category of commutative unital C*-
algebras, so it becomes natural to try to extend the
above result to general C*-algebras. There being no
completely satisfactory notion of freeness of an action
on a C*-algebra, the author herein defines and stud-
ies conditions on the equivariant K-theory of a C*-
algebra, and in case the algebra is commutative, is
able to determine through the equivariant K-theory
whether the underlying space is free. LW

Differential Topology, P. Lecture Notes in
Mathematics-1264: Rational Homotopy Theory. Wu
Wen-tsiin. Springer-Verlag, 1987, viii + 219 pp, $20
(P). [ISBN: 0-387-13611-8] Clarifying and extending
the works of D. Sullivan, this book studies the ration-
al homotopy type (minimal model) of a differential
graded algebra of differential forms on a simplicial
complex K. In particular, the book shows that the
minimal model is homotopically invariant, and con-
tains complete information on the cohomology and
homotopy ring of K. The author takes a construc-
tional approach, and is thus able to explicitly deter-
mine the minimal model of a fiber space as well as
that of a fiber-square-constructed space. LW

Topology, T*(17-18), S*, P, L. Classical Tes-
sellations and Three-Manifolds. José Maria Mon-
tesinos. Universitext. Springer-Verlag, 1987, xvii
+ 230 pp, $35 (P). [ISBN: 0-387-15291-1] Writ-
ten to provide graduate students with a source
of geometrical intuition in low-dimensional topol-
ogy, this fascinating monograph illuminates three of
Thurston’s eight geometries by exploring manifolds
of tessellations in Euclidean, spherical, and hyper-
bolic space. Profusely illustrated with mineral crys-
tal patterns, ornamental motifs, and mathematical

sketching. LAS

Dynamical Systems, T(16-17), P, L. Chaotic Vi-
brations: An Introduction for Applied Scientists and
Engineers. Francis C. Moon. Wiley, 1987, xv + 309
pp, $39.95. [ISBN: 0-471-85685-1] An applied view of
chaotic phenomena, richly illustrated with physical
systems, mathematical models, and standard exam-
ples (Henon maps, Lorenz attractors, Poincaré maps,
Lyapunov exponents). Little direct mathematical
theory, but a great deal of illustrative applications
that help to develop intuition. LAS

Dynamical Systems, P. Attraktoreingrenzung fir
nichtlineare Systeme. Gennadij A. Leonov, Volker
Reitmann. Teubner-Texte zur Math., V. 97. BG
Teubner, 1987, 196 pp, 20M (P). [[SBN: 3-322-00427-
9]

Dynamical Systems, P. Autowave Processes
in Kinetic Systems: Spatial and Temporal Self-
Organization in Physics, Chemisiry, Biology, and
Medicine. V.A. Vasiliev, et al. Math. & Its Ap-
plic. D Reidel (US Distr: Kluwer Academic), 1987,
262 pp, $69. [ISBN: 90-277-2379-6] From Chapter 1:
“An autowave process is a self-sustained wave pro-
cess in an active nonlinear medium maintaining its
characteristicsat a constant level at the expense of an
energy source distributed in the medium.” The key
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word is “nonlinear.” Examples include propagation
of phase-transition fronts, Belousov-Zhabotinskii re-
actions, and nerve cell activity. BC

Probability, S**, L**, Fifty Challenging Problems
in Probability with Solutions. Frederick Mosteller.
Dover, 1987, viii + 88 pp, $3.95 (P). [ISBN: 0-486-
65355-2] Unabridged republication of the work first
published in 1965. Stimulating and challenging prob-
lems with leisurely, instructive, conversational solu-
tions that demonstrate mathematical thinking at its
best. LCL

Probability, P*. Dependence in Probability and
Statistics: A Survey of Recent Results. Ed: Ernst
Eberlein, Murad S. Taqqu. Prog. in Prob. & Stat.,
V. 11. Birkhauser Boston, 1986, xi + 473 pp, $39.50.
[ISBN: 0-8176-3323-5] Twenty-three papers written
by participants in an international conference held
in Oberwolfach in April 1985, concerned with limit-
ing results assuming various dependence structures.
“These papers tie together known results, describe
the underlying ideas, summarize the state-of-the-art,
and state some open problems.” RSK

Stochastic Processes, P*. Stochastic Geometry
and Iis Applications. D. Stoyan, W.S. Kendall, J.
Mecke. Prob. & Math. Stat. Wiley, 1987, 345
pp, $49.95. [ISBN: 0-471-90519-4] Revised transla-
tion of Stoyan and Mecke’s 1983 book Stochastische
Geometrie. “Topics covered include the basic theo-
ries of point processes, random sets, fibre processes,
tessellations, stereology and the statistical theory of
shape.” Extensive bibliography of this relatively new
field. RSK

Stochastic Processes, S(17-18), P. Radically El-
ementary Probability Theory. Edward Nelson. An-
nals of Math. Stud., No. 117. Princeton U Pr,
1987, ix + 97 pp, $40; $15 (P). [ISBN: 0-691-08473-
4; 0-691-08474-2] Develops the theory of probability
and stochastic processes using nonstandard analysis,
leaving the results in nonstandard form. More ad-
vanced appendix shows how the conventional theory
of stochastic processes can be derived from nonstan-
dard theory. Note hardcover price. RSK

Stochastic Processes, T(18: 1, 2). Applied Prob-
ability and Queues. Sgren Asmussen. Prob. &
Math. Stat. Wiley, 1987, x + 318 pp, $67.95.
[ISBN: 0-471-91173-9] Divided into three parts: Part
A deals with simple Markovian models, particularly
as they relate to queueing theory; Part B presents
basic mathematical tools—renewal theory, regener-
ative processes, and random walks; Part C investi-
gates special models and methods, primarily dealing
“with a more narrow class of problems associated
with general distributions of interarrival times and
service times.” RSK

Elementary Statistics, T*(13: 1), S. Introduc-
tion to Biostatistics, Second Edition. Robert R.
Sokal, F. James Rohlf. WH Freeman, 1987, xii 4+ 363
pp, $37.95. [ISBN: 0-716-71805-7] Modest revision of
the authors’ 1973 First Edition (TR, March 1974),
again based on their more inclusive book Biome-
try (Second Edition, TR, May 1982). Changes in-
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clude some new descriptive procedures, more non-
parametrics, the Bonferroni method of multiple com-
parisons, and the use of the G statistic rather than
the more common chi-square test to analyze fre-
quency data. RSK

Elementary Statistics, T(14-18), S, L. Elements
of Statistics for the Life and Social Sciences. Brax-
ton M. Alfred. Texts in Stat. Springer-Verlag, 1987,
xiii + 190 pp, $36. [ISBN: 0-387-96500-9] Expan-
sive, self-contained introduction to statistical ideas
needed for scientific work in anthropology (and pre-
sumably other life and social sciences as well). Case
studies used to illustrate logiral argument, deductive
thinking, prediction, and hypothesis testing. No ex-
ercises. LCL

Elementary Statistics, T(14-15: 1, 2). Ba-
sic Statistical Methods for Engineers and Scientists,
Third Edition. John B. Kennedy, Adam M. Neville.
Harper & Row, 1986, xx + 613 pp. [ISBN: 0-06-
043633-6] Revision of the authors’ 1976 Second Edi-
tion. Includes new material on probability, statistical
inference, and goodness of fit. Emphasizing practical
considerations, it also includes chapters on rejection
of outliers, distributions of extremes, tolerance and
control charts, acceptance and rejection testing, and
an introduction to the design of experiments. RSK

Statistics, P. Advances in Multivariate Statistical
Analysis: Pillai Memorial Volume. Ed: A.K. Gupta.
Theory & Dec. Lib., Ser. B. D Reidel (US Distr:
Kluwer Academic), 1987, xvi + 389 pp, $89. [ISBN:
90-277-2531-4] Twenty-one papers providing a cross-
section of recent developments in multivariate sta-
tistical analysis. Dedicated to the memory of K.C.
Sreedharan Pillai (1920-1985), it contains a short
biography and a bibliography of his works. Note
price. RSK

Statistics, T(17-18: 1), S, P*. The Asymptotic
Theory of Eztreme Order Statistics, Second Edition.
Janos Galambos. Robert E Krieger, 1987, xv + 414
pp, $49.50. [ISBN: 0-89874-957-3] Revision of the
author’s 1978 First Edition published by Wiley (TR,
December 1978). Rigorous presentation covering all
known asymptotic models. Extensive bibliography,
supplemented by a survey of the literature in each
chapter. RSK

Statistics, T(17), P, L. Kendall’s Advanced The-
ory of Statistics, Fifth Edition of Volume 1: Distri-
bution Theory. Alan Stuart, J. Keith Ord. Oxford
U Pr, 1987, xvi + 604 pp, $75. [ISBN: 0-19-520561-
8] Major revision of the 1977 Fourth Edition of the
first volume of this classic three-volume treatise, orig-
inally written by Kendall (1907-1983). The topics
covered remain basically the same, but much new
material has been added and terminology and proofs
have been updated. RSK

Statistics, T(14-16: 1, 2), S, L. Applied Statis-
tics: Analysis of Variance and Regression, Second
Edition. Olive Jean Dunn, Virginia A. Clark. Prob.
& Math. Stat. Wiley, 1987, xii + 445 pp, $36.95.
[ISBN: 0-471-81269-2] Revision of the authors’ 1974
text (TR, February 1975). Each chapter now in-
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cludes a brief description of relevant BMDP and SAS
computer programs. Also includes new material on
repeated measure designs and the use of dummy vari-
ables in multiple regression and covariance analysis,
and expanded material on variable selection and test-
ing assumptions in multiple regression. RSK

Statistics, T(18: 1), P. Asymptotic Distribu-
tion Theory in Nonparametric Statistics. Manfred
Denker. Adv. Lect. in Math. Friedr Vieweg & Sohn,
1985, vii + 204 pp, $18 (P). [ISBN: 3-528-08905-9]
Treats three basic types of statistics: Hoeffding’s U-
statistics, differentiable statistical functionals, and
statistics based on ranks. Concludes with a chap-
ter on contiguity and efficiency. No exercises. RSK

Statistics, T(17: 1, 2), P. Plane Answers to
Complez Questions: The Theory of Linear Models.
Ronald Christensen. Texts in Stat. Springer-Verlag,
1987, xiv + 380 pp, $42. [ISBN: 0-387-96487-8] De-
signed “to rigorously illustrate the practical appli-
cation of the projective approach to linear models.”
First half covers standard topics in regression analy-
sis, analysis of variance and covariance; last part in-
troduces various special topics such as residual anal-
ysis, variance component estimation, and log-linear

models. RSK

Statistics, T(18: 1), S, P*. Measurement Error
Models. Wayne A. Fuller. Prob. & Math. Stat. Wi-
ley, 1987, xxiii + 440 pp, $44.95. [ISBN: 0-471-86187-
1] Presents both theory and applications of models in
which the explanatory variables are measured with
error. Includes a number of real examples illustrating
the procedures. Good bibliography. RSK

Statistics, S(18-17), P. Design, Data, and Analy-
sis by Some Friends of Cuthbert Daniel. Ed: Colin
L. Mallows. Prob. & Math. Stat. Wiley, 1987,
xix + 380 pp, $29.95. [ISBN: 0-471-83937-X] Sev-
enteen papers, three expository, two concerned with
design issues, and the other twelve dealing primarily
with the analysis of data, written in recognition of
Daniel’s great influence in this latter area. Written
for “students and aspiring statistical consultants.”
Includes a brief outline of Daniel’s career and a list
of his publications. RSK

Statistics, P. Contributions to the Theory and Ap-
plication of Statistics: A Volume in Honor of Her-
bert Solomon. Ed: Alan E. Gelfand. Academic Pr,
1987, xxviii + 544 pp, $59.95. [ISBN: 0-12-279450-
8] Twenty papers, contributed by friends and col-
leagues, grouped into four areas where Solomon has
made significant contributions: operations research
and applied probability; distribution theory and ge-
ometric probability; applications in the areas of law
and justice, medicine and psychology; and inference
methodology. Includes a brief biographical sketch
and a list of Solomon’s publications. RSK

Statistics, T(16-17: 1), S, L. Introduction to Sta-
tistical Inference. Jack Carl Kiefer. Ed: Gary Lor-
den. Texts in Stat. Springer-Verlag, 1987, viii +
334 pp, $48. [ISBN: 0-387-96420-7] Text based on
lecture notes developed by Kiefer (1924-1981) for a
first course in statistical inference. Presents a mod-
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ern decision-theoretic approach to inference, empha-
sizing the need to justify the use of a procedure by
some criterion of goodness. RSK

Statistics, P. The Population-Sample Decomposi-
tion Method. A.M. Wesselman. Intern. Stud. in
Econ. & Econometrics, V. 19. Kluwer Academic,
1987, 242 pp, $47.50. [ISBN: 90-247-3603-X] An ap-
proach which does not require all the model assump-
tions of classical statistical methods. The study aims
to illustrate how the population-sample decomposi-
tion method is applicable to a much wider class of
statistics. LCL

Programming, T(13-14: 1). Pascal-SC: A Com-

puter Language for Scientific Computation. Gerd
Bohlender, et al. Perspect. in Comput., V. 17.
Academic Pr, 1987, ix + 292 pp, $34. [ISBN:

0-12-111155-5] Pascal-SC (scientific computation—
implemented for Z80, 8088, and 68000 processors) is
an extension of standard Pascal which allows greater
accuracy in solving numerical problems, and has
dynamic arrays and better string handling; chap-
ters (among others) include standard Pascal, real
floating-point arithmetic, strings and text process-
ing, dynamic arrays, and modules; a syntax diagram
appendix is included, along with numerous complete
examples; useful as either a reference or text for a
numerical-based Pascal course. RSF

Languages, P. Lecture Notes in Computer Science-
274: Functional Programming Languages and Com-
puter Architecture. Ed: Gilles Kahn. Springer-
Verlag, 1987, vi + 470 pp, $34.60 (P). [ISBN: 0-387-
18317-5] 24 papers from the third conference on the
title subject, held in Portland, Oregon, September
1987. This conference focused particularly on im-
plementation techniques for functional programming
languages and on computer architectures to support
the efficient execution of functional programs. DFA

Languages, P. REDUCE: Software for Algebraic
Computation. Gerhard Rayna. Symbolic Compu-
tation. Springer-Verlag, 1987, ix + 329 pp, $29.80
(P). [ISBN: 0-387-96598-X] An introduction to RE-
DUCE 3—a system for symbolic algebraic compu-
tation available on systems ranging in scale from an
IBM PC to a Cray X/MP. Of special interest is a sec-
tion containing several case studies illustrating the
use of this symbolic computation package to solve
nontrivial problems. AO

Languages, P. Lecture Notes in Computer Science-
276: ECOOP ’87: European Conference on Object-
Oriented Programming. Ed: J. Bézivin, et al.
Springer-Verlag, 1987, vi + 273 pp, $23.10 (P).
[ISBN: 0-387-18353-1] Contains 25 papers on various
aspects of object-oriented programming. AO

Computer Systems, P. Lecture Notes in Com-
puter Science-275: System Development and Ada.
Ed: A.N. Habermann, U. Montanari. Springer-
Verlag, 1987, 305 pp, $25.70 (P). [[SBN: 0-387-18341-
8] An interesting collection of papers presented at
the workshop on software factories and Ada held
in Capri, Italy, May 1986. Covers three general
topics. First, design of software development en-
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vironments, describing commercially available envi-
ronments to ease production of very large software
systems. Language-specific and mixed-language en-
vironments are presented. Secondly, methods for
software development, addressing the issue of ensur-
ing that implementations accurately reflect specifica-
tions. Finally, Ada compiler validation and specify-
ing and testing Ada events are covered. PS

Theory of Computation, P. Lecture Notes in
Computer Science-273: A Connotational Theory of
Program Structure. James S. Royer. Springer-
Verlag, 1987, 186 pp, $18 (P). [ISBN: 0-387-18253-
5] This monograph is an outgrowth of a Ph.D. dis-
sertation (SUNY at Buffalo) continuing development
of a language-independent theory of program struc-
ture begun by Riccardi and Case; the central theme
is the subclass, called acceptable numberings, of ef-
fective numberings; also stressed is “building” one
control structure from others. It is very mathemat-
ical, with symbolism, numerous definitions, lemmas,
propositions, and theorems; includes a bibliography,
notation index, and definition index. RSF

Theory of Computation, P. Lecture Notes in
Computer Science-270: Computation Theory and
Logic. Ed: Egon Borger. Springer-Verlag, 1987, ix
+ 442 pp, $34.60 (P). [ISBN: 0-387-18170-9] Memo-
rial volume for Dieter Rodding, a German logician
interested in interaction of logic and computer sci-
ence. Topics include recursion theory, automata the-
ory, complexity theory, applications of logic in sys-
tems theory. KS

Theory of Computation, P. Logic of Program-
ming and Calculi of Discrete Design. Ed: Manfred
Broy. NATO ASI Ser. F, V. 36. Springer-Verlag,
1987, 413 pp, $75. [ISBN: 0-387-18003-6] Proceed-
ings of a NATO Advanced Study Institute held in
Marktoberdorf, Federal Republic of Germany, July
29-August 10, 1986. Contains fourteen papers on
methodologies for the specification, design, and ver-
ification of programs. AO

Theory of Computation, T*(16-18: 1, 2), S,
P, L. Foundations of Logic Programming, Second,
Eztended Edition. J.W. Lloyd. Symbolic Compu-
tation. Springer-Verlag, 1987, xii + 212 pp, $44.50.
[ISBN: 0-387-18199-7] Expanded material in the Sec-
ond Edition leans toward databases. As well, the
class of programs considered is enlarged. Preliminar-
ies are in the first chapter while the second chapter
contains the declarative and procedural semantics of
definite programs. Chapter three deals with normal
programs and chapter four is new and treats unre-
stricted programs. The last chapter provides a the-
oretical foundation for deductive database systems.
Chapter problems. References. Index. (First Edi-
tion, TR, October 1985.) RJA

Artificial Intelligence, P. Natural Language Pars-
ing Systems. Ed: Leonard Bol:. Symbolic Computa-
tion. Springer-Verlag, 1987, xviii + 367 pp, $49.50.
[ISBN: 0-387-17537-7] This collection of nine essays
(fourteen authors) about current problems of natural
language parsing in an artificial intelligence context
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presents research results in greater detail than jour-
nal articles allow; each paper has an abstract and
reference list; there is a volume subject index. RSF

Artificial Intelligence, P. The Knowledge Fron-
tier: Essays in the Representation of Knowledge. Ed:
Nick Cercone, Gordon McCalla. Symbolic Compu-
tation. Springer-Verlag, 1987, xxxv + 512 pp, $42.
[ISBN: 0-387-96557-2] This collection of 17 essays
(26 authors) about knowledge representation is an
outgrowth of the IEEE Computer Special Issue on
Knowledge Representation in 1983; six of the papers
are new, 7 are updated, and 4 are unchanged; the pa-
pers are organized in six sections—Overview, Logic,
Foundations, Organization, Reasoning, and Applica-
tions, giving a comprehensive treatment to this as-
pect of artificial intelligence. The preface, index, and
reference list are extensive. RSF

Computer Science, P. Lecture Notes in Computer
Science-263: Advances in Cryptology— CRYPTO
’86. Ed: A.M. Odlyzko. Springer-Verlag, 1987, xi
+ 487 pp, $34.60 (P). [ISBN: 0-387-18047-8) Pro-
ceedings of an annual conference held at the Univer-
sity of California, Santa Barbara, devoted to cryp-
tologic research. Thirty-six papers classified by data
encryption, public-key cryptography, zero-knowledge
proofs, secret-sharing methods, hardware systems,
software systems, software protection, probabilistic
methods, and other topics. LCL

Computer Science, P. Lecture Notes in Computer
Science-265: Analogical and Inductive Inference. Ed:
K.P. Jantke. Springer-Verlag, 1987, vi + 227 pp,
$20.60 (P). [ISBN: 0-387-18081-8] Written versions
of presentations given at the International Work-
shop on Analogical and Inductive Inference held in
Wendisch-Rietz, GDR, October 6-10, 1986. Discus-
sion centered around two basic approaches to learn-
ing algorithms: inductive inference and analogical
reasoning. RJA

Computer Science, P. Lecture Notes in Com-
puter Science-264: Logic Programming ’86. Ed: Ei-
iti Wada. Springer-Verlag, 1987, 179 pp, $18 (P).
[ISBN: 0-387-18024-9] Proceedings of the Fifth Logic
Programming Conference held in Tokyo, Japan, June
23-26,1986. RJA

Applications, P. Reliability Data Bases. Ed:
Aniello Amendola, Alfred Z. Keller. D Reidel (US
Distr: Kluwer Academic), 1987, xii + 398 pp, $72.
[ISBN: 90-277-2549-7] Probabilistic techniques are
increasingly used to assess safety, new system de-
signs, and reliability of products. These applications
require the availability of good dependable and rele-
vant data about failure rates, incidents, performance,
and so forth. These proceedings (ISPRA Course, Oc-
tober 1985) provide a comprehensive review of the
state-of-the-art relating to the collection, processing,
and use of such data. LCL

Applications, P. Filtering for Stochastic Pro-
cesses with Applications to Guidance, Second Edi-
tion. Richard S. Bucy, Peter D. Joseph. Chelsea,
1987, xviii + 217 pp, $19.95. [ISBN: 0-8284-0326-0]
Filtering a random signal process from observations
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corrupted by noise. A reprint of a 1968 edition which
gives a detailed derivation of the Kalman-Bucy filter
(TR, May 1969). Includes appendices which correct
the a priori bounds and gives an up-to-date list of
relevant references. CEC

Applications (Biological Science), P. Mathe-
matical Aspects of Hodgkin-Huzley Neural Theory.
Jane Cronin. Stud. in Math. Biology, V. 7. Cam-
bridge U Pr, 1987, xi + 261 pp, $49.50. [ISBN:0-521-
33482-9] An introduction to the study of mathemat-
ical models of electrically active cells. Provides an
account of the literature on the subject and covers in
detail the Hodgkin-Huxley model for nerve conduc-
tion. Accessible to mathematicians with little or no
background in physiology. RH

Applications (Cognitive Science), S, P, L**.
Brains, Machines, and Mathematics, Second Edi-
tion. Michael A. Arbib. Springer-Verlag, 1987, xvi +
202 pp, $27. [ISBN: 0-387-96539-4] Revision (princi-
pally an expanded introduction) of a path-breaking
book written in 1962 (published by McGraw-Hill in
1964) outlining a theory of automata to explain the
processing of information in brain-like machines. Be-
ginning with the McCulloch and Pitts model of neu-
ral networks and ending in Godel’s theorem, Arbib
joins biology to mathematics in a prescient challenge
to contemporary cognitive science. LAS

Applications (Electrical Engineering), T(15-
16: 1). Integrated Circuit Design. Alan F. Mur-
ray, H. Martin Reekie. Springer-Verlag, 1987, xiv
+ 152 pp, $28. [ISBN: 0-387-91303-3] Designed as
a textbook for an introductory course for electrical
engineering or physics students. The final chapter
provides a design exercise that can be assigned as a
year-long project. AO

Applications (Electrical Engineering), T(16-
17: 2), S, P, L. Methods in Electromagnetic Wave
Propagation. D.S. Jones. Oxford Eng. Sci. Ser.,
V. 8. Clarendon Pr, 1987, $29.95 each (P). Vol-
ume 1: Theory and Guided Waves, 433 pp, [ISBN:
0-19-856189-X]; Volume 2: Radiating Waves, 476 pp.
[ISBN: 0-19-856190-3] The objective of these volumes
is to develop a suitable framework of theory and nu-
merical analysis with applications to various aspects
of propagation of electromagnetic waves. Numerous
exercises are included. MU

Applications (Engineering), P. Reliability Mod-
elling and Applications. Ed: A.G. Colombo, A.Z.
Keller. D Reidel (US Distr: Kluwer Academic),
1987, x + 391 pp, $74. [ISBN: 90-277-2566-7] Pro-
ceedings of the ISPRA Course (November 1985) in-
cludes twenty papers grouped into five sections: sys-
tems reliability, availability and maintainability of
systems, structural reliability, reliability of comput-
ing systems, human reliability. LCL

Applications (Engineering), P. Lecture Notes in
Mathematics-1279: Saint-Venant’s Problem. Dorin
Tesan. Springer-Verlag, 1987, viii + 162 pp, $16.30
(P). [ISBN: 0-387-18361-2] The problem of A.J.C.B.
de Saint-Venant is to “determine the equilibrium of a
homogeneous and isotropic linearly elastic cylinder,
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loaded by surface forces distributed over its plane
ends.” These lecture notes present recent research on
Saint-Venant’s problem for anisotropic elastic bod-
ies, on the relaxed Saint-Venant problem for hetero-
geneous elastic cylinders, and on Saint-Venant prob-
lems within the linearized theory of Cosserat elastic
bodies. One hundred sixty references from Saint-
Venant’s original papers to the present. JK

Applications (Engineering), P. Contact Mechan-
ics. K.L. Johnson. Cambridge U Pr, 1987, xi + 452
PP, $34.50 (P). [ISBN: 0-521-34796-3] Covers stresses
and deformations which arise when two solid bod-
ies come in contact, especially when the contact is
localized due to dissimilar profiles (non-conformal).
This induces a local stress concentration which can
be studied using the method of superposition of point
force solutions. MR

Applications (Engineering), P. Lecture Notes in
Engineering-9: The Complez Variable Boundary El-
ement Method. Theodore V. Hromadka II. Springer-
Verlag, 1984, xi + 243 pp, $22 (P). [ISBN: 0-387-
13743-2] Develops methods for approximating solu-
tions to the Dirichlet and Neumann boundary-value
problems by applying the Cauchy integral formula
to the boundary element method. Includes a quick
review of basic complex variable theory. BH

Applications (Fluid Mechanics), P. Amorphous
Polymers and Non-Newtonian Fluids. Ed: Constan-
tine Dafermos, J.L. Ericksen, David Kinderlehrer.
Inst. for Math. & Its Applic.,, V. 6. Springer-
Verlag, 1987, xii + 195 pp, $22. [ISBN: 0-387-96556-
4] Ten papers from a workshop held at the Institute
for Mathematics and Its Applications (IMA) in Min-
nesota during the 1984-85 special year on continuum
physics and partial differential equations. LCL

Applications (Physics), P, L. Three Hundred
Years of Gravitation. Ed: S.W. Hawking, W. Is-
rael. Cambridge U Pr, 1987, xiii + 684 pp, $69.50.
[ISBN: 0-521-34312-7] Sixteen chapters, separately
authored, surveying cosmology, gravitation, string
theory, and other theories descended from Newton’s
Principia, published just 300 years ago. Much more
than a simple collection of papers, this compre-
hensive commemorative volume is a superb, well-
planned exposition of the modern theory of gravi-
tation. LAS

Applications (Physics), T(16-17: 1, 2), S, L.
Gravitational Physics of Stellar and Galactic Sys-
tems. William C. Saslaw. Cambridge U Pr, 1987,
xvii + 491 pp, $34.50 (P) [ISBN: 0-521-34975-3] Al-
though primarily a theoretical treatise based on clas-
sical Newtonian gravity, some observational data is
introduced for motivation. The text is relatively self-
contained and accessible to anyone familiar with ad-
vanced calculus. Numerous interesting exercises are
included. MU

Applications (Physics), P. Symmetries of Maz-
well’s Equations. W.I. Fushchich, A.G. Nikitin.
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Transl: John R. Schulenberger. Math. & Its Applic.
D Reidel (US Distr: Kluwer Academic), 1987, xiv
+ 214 pp, $74. [ISBN: 90-277-2320-6] The power of
Maxwell’s equations lies largely in their symmetries,
both geometric (Lie-group) and non-geometric (Lie-
algebra). The former is classical; the latter is still
being developed, and is the main subject here. The
moral: Symmetry makes the world go ‘round. BC

Applications (Simulation), P. DEMOS: A Sys-
tem for Discrete Event Modelling on Simula. G.M.
Birtwistle. Springer-Verlag, 1987, 215 pp, $18 (P).
[ISBN: 0-387-91301-7] An introduction to discrete
event simulation modelling using DEMOS—a sys-
tem which compliments SIMULA by providing el-
ements which help beginners write simulations more
quickly. Describes the basic DEMOS approach to
model building as well as DEMOS descriptions of
synchronization problems arising in discrete event
simulations. Written as a teaching text for DEMOS,
not as a reference. Tutorial style presents new fea-
tures and offers an illustrative example of each. DE-
MOS programs’ advantage over regular SIMULA
programs: more easily written and understood with-
out a thorough knowledge of SIMULA. Includes ex-
ercises and solutions. PS

Applications (Social Science), S, P, L. Multi-
dimensional Similarity Structure Analysis. 1. Borg,
J. Lingoes. Springer-Verlag, 1987, xiv + 390 pp,
$39. [ISBN: 0-387-96525-4] A class of models that
represent similarity coefficients among a set of ob-
jects (e.g., correlation matrix) as distances in mul-
tidimensional space (two points are closer together
when they are more correlated). The resulting pic-
ture is easier to assimilate than the table of coeffi-
cients. This book of case studies deals with all as-
pects of this subject, starting from scratch assuming
no more than a high school background in mathe-
matics. LCL
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