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BIRKHOFF’S AXIOMS FOR SPACE GEOMETRY
ROLAND BROSSARD, Université de Montréal

1. Introduction. The motivation for this study is a definition of euclidean
geometry leaving open the possibility of extension to higher dimensional spaces,
based on the intuitive ideas concerning the use of graduated rulers and pro-
tractors. In fact, the only essential change in the Birkhoff’'s presentation is a
weakening in the protractor axiom; this weakening allows the geometry of three-
dimensional space to be constructible.

The system of axioms is based on “coordinate functions”; they are intui-
tively conceived as “applications” of a long graduated ruler to the lines, and as
“applications” of a protractor to the plane bundles of half-lines. Distance,
angular measure, and the betweenness relation are defined in terms of coordinate
functions. The axioms are formulated in such a way as to exhibit a certain
symmetry between the properties of coordinate functions for the elements of
the lines and the properties of coordinate functions for the elements of the
bundles, the main difference consisting in the value-rings.

2. Primitive notions. Points are abstract undefined objects. Primitive terms
are: point, line, coordinate function of a line, half-line, bundle of half-lines, and
coordinate function of a bundle of half-lines.

3. Axioms on points, lines, and coordinates of the points of the lines. Certain
subclasses of points are called lines. The axioms on the lines are:

Ly There exist at least two distinct points.

L,. If A and B are two distinct points, then there exists one and only one line
containing A and B.

Ls. There exist points not all on the same line.

A set of points is said to be collinear if this set is a subset of a line. Two sets
are collinear if the union of these two sets is collinear. Coordinate functions on
the lines are introduced by the following axiom.

CL.. There exists associated with each line L, a nonempty class X of one-to-
one mappings x of L onto the field R of real numbers. If x; is a member of X and
if x; is any one-to-one mapping of L onto R, then x; is a member of X if and only
if for all AEL and for all BEL.

| #:(4) — x(B)| = | %;(4) — 2:(B)| .

The elements of X are called coordinate funcitions of L. The distance between
two points 4 and B, denoted AB (or BA) is defined to be the unique nonnega-
tive number Ix(A) —x(B)I where x is an arbitrary member of X. The point B
is between the points 4 and C if 4, B, and C belong to the same line and either
x(A) <x(B) <x(C) or else x(C)<x(B)<x(4). We shall now show that this
betweenness relation is defined independently of the coordinate function con-
sidered on the line containing the points 4, B, and C.

593



594 BIRKHOFF'S AXIOMS FOR SPACE GEOMETRY [June-July

If B is between 4 and C with respect to a coordinate function x; then
(3.1) xi(4) < x:i(B) < x5(C) or else (3.2) x:(C) < x:i(B) < wi(4).

Let x; be an arbitrary coordinate function for the same line. Axiom CL, implies
that

(3.3) &i(A) — x;,(B) = %;(4) — «;(B) or else
(3.4) 2(4) — xi(B) = x;(B) — x;(4),
(3.5) x:(A) — x:(C) = x;(4) — 2;(C) or else
(3.6) 2(4) — %:(C) = %;(C) — x;(4),
3.7 x:(B) — %:(C) = x;(B) — %;(C) or else
(3.8) x:(B) — %:(C) = 2;(C) — x;(B).

If (3.1) is valid then all left members of (3.3), (3.4), (3.5), (3.6), (3.7), (3.8) are
negative and if (3.2) is valid the same left members are all positive. Equations
(3.3), (3.5), and (3.7) are valid or else equations (3.4), (3.6), and (3.8) are valid
because any two equations in a group implies the third one. Consequently with
respect to x;, B is also between 4 and C.

For collinear points 4, B, C the point B is between the points 4 and C if and
only if AB+BC=AC. If O and 4 are two distinct points of a line, we call half-
line OA with end-point O the set of points P on that line such that O is not be-
tween A and P. In speaking of a half-line 04, the first element of the ordered
couple (0, 4) will always represent the end-point. If 4 and B are distinct points,
the set of points containing 4, B, and all the points between A and B is called
a segment. The distance AB is called the length of the segment AB. A segment
without its end-points is an interval.

M is the mid-point of the segment AB if M is an element of this segment
and if A M= MB. If x is a coordinate function for the line 4B then there exists
on that line a point M defined by the relation

2(4) + 5(B)

(M) = 5

We can easily verify that M is between 4 and B (i.e., M belongs to the seg-
ment AB), and that A M= MB. Consequently every segment has a mid-point.
There is only one mid-point because if M and M’ are two mid-points of the seg-
ment AB, then 4B, M and M’ belong to the line AB, AM = MB, AM'=M'B
and there exists a coordinate function x for the line 4B such that

x(4) — x(M) x(M) — x(B)

and
x(4) — x(M') = x(M') — x(B);
consequently x(M’) —x(M) =x(M) —x(M"), x(M) =x(M"), and M=M.
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4. Axioms on bundles and coordinates of the half-lines of the bundles. Cer-
tain subclasses of the class of all half-lines with the same end-point are called
bundles. The common endpoint O of the elements of a bundle is called the vertex
of the bundle; the notation B, will be used for a bundle of vertex O. An angle is
an unordered couple of half-lines with the same end-point O; the point O is
called the vertex of the angle, and the half-lines the sides of the angle. An angle
is straight if the sides are distinct and collinear. The axiom on the bundle is:

Bi. If I and m are two noncollinear half-lines with the same end-point O, then
there exists one and only one bundle B, containing these half-lines.

The axiom on the coordinate functions of the bundles is:

CBy. There exists, assoctated with each bundle B,, a nonempty class ® of one-
to-one mappings ¢ of B, onto the equivalence classes of real numbers modulo 2.
If ¢; is a member of  and if ¢; 1s any one-to-one mapping of B, onto the equivalence
classes of real numbers modulo 2w, then ¢; is a member of ® if and only if for all
1€ B, and for all mEB,

| 6:) = gatm) | = [ ) — ¢i(m) |,
where ]¢,-(l) —¢,-(m)| = ]¢j(l) —¢,~(m)] stands for
¢:i() — ¢i(m) = (;() — ¢;(m)) (modulo 27)
or
¢i(l) — ¢i(m) = (¢;(m) — ¢;(1)) (modulo 2).

The elements of ® are called coordinate functions of B,. If x denotes a real
number, we shall denote by [x] the equivalence class modulo 27 containing x,
and we shall denote by § the real number of the class [y] such that 0 <5 <2.
And x=y will mean x=1y (modulo 27).

Let [, m be an angle belonging to a bundle B,; the measure of the angle I, m
with respect to B,, denoted Zlm, is the minimum of the two real numbers
o) —p(m), ¢p(m) —¢(l) where ¢ is a coordinate function associated to the bundle
B,. £AOB is independent of the coordinate function used to obtain it. If 4, O, B
are three distinct points, we write ZAOB for /£ (half-line OA4)(half-line OB);
the measure being calculated in a bundle B, containing the half-lines 04 and
OB. We shall prove in the next section that the measure of an angle is inde-
pendent of the bundle B, in which this angle is embedded.

5. The continuity axiom and the similarity axiom.

ConTINUITY AXIOM. If B, is a bundle of vertex O, and if A, B are distinct
nonvertex points of noncollinear half-lines of the bundle, then to every point P on the
segment AB, there exists a half-line OC of B, containing P such that

[£40P + 2POB] = [£40B].
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Conversely if a half-line OC of the bundle B, is such that [ £LAOC-+ £COB]
=[ZAOB)] then there exists a point P belonging simultaneously to the halfline
OC and to the segment AB.

FiG. 1

For an angle defined by two noncollinear half-lines 04 and OB, axiom B;
implies that there exists only one bundle B, containing this angle; therefore
£ AOB is uniquely defined. If 04 and OB coincide, the class of bundles contain-
ing the angle 40OB may have more than one element, but in that case the meas-
ure of this angle is zero whatever the considered bundle of the class. We shall
now show that the measure of a straight angle is 7w whatever the bundle in which
this straight angle is embedded.

If an angle 4 OP has 7 for measure then the half-line 04 is distinct from the
half-line OP (otherwise ZAOP=0). If this angle AOP with measure 7 is not a
straight angle then there exists a point B on the line AP, not on the line 04,
such that P is between 4 and B (Fig. 1), and in the unique bundle B, contain-
ing the half-lines 04, OB, OP the continuity axiom implies that [ ZAOP
+ £POB]=[Z£AO0B], that is to say,

(5.1) [r] + [£POB] = [£A0B].

But ZPOB#0 for the points 4, O, P are not collinear. Furthermore ZPOB#,
for if ZPOB=m then from (5.1) we have ZAOB=7n+ £LPOB=7n+7r=21=0
and OA4 coincides with OB. Consequently (5.1) is contradictory and if an angle,
with respect to a bundle containing this angle, has m for measure then this
angle is a straight angle.

Let AOB be a straight angle and let B, be an arbitrary bundle containing this
angle. Then for an arbitrary admissible coordinate function ¢ for B, we have
either (i) 0=¢(04) <7 or else (ii) T<¢(04)<2m. In case (i) let OC be the
unique element of B, such that ¢(0C)=¢(04)+ [r]; then ¢(OC)—¢(04)
=¢(0A)+ [r]—¢(0A4) = [r], the angle AOC having, with respect to B,, 7 for
measure is a straight angle, and consequently the angle 40B, being equal to
the angle 40C, also has 7 for measure. Similarly, in case (ii) let OD be the
unique element of B, such that ¢(OD)=¢(0A4)— [r]; then ¢(04)—¢(OD)
=¢(04) — (¢(04) — [r]) = [x], the angle AOD is straight, and the angle A0B
has also 7 for measure.
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This completes the proof that the measure of an angle is independent of the
bundle in which it can be contained. Furthermore we have proved the follow-
ing theorem concerning the measure of straight angles.

THEOREM 1. The measure of an angle is  if and only if this angle is straight.

We shall now consider properties of the bundles and their coordinate func-
tions.

THEOREM 2. If ¢ EDP and if ¢y is any mapping of B, into the equivalence classes
of real numbers modulo 2w, then ¢ if and only if there exist e=[+1], and 6
such that for every 1 B,, ¢:1(l) = ep(l) +-6.

Proof. Sufficiency is obvious. To prove necessity suppose that ¢;&®. Be-
cause ¢ is one-to-one there exist half-lines 7, n in B, such that ¢(m)=[0],
¢(n) = [r]. Let ¢1(m) =0. Then

$1(n) — ¢a(m) = £ (¢(n) — ¢(m)) = * [r] = [x],
and so
(5.2) ¢1(n) = [x] + 0.
For any /& B, we have
61(D) — ¢1(m) = £ ($() — ¢(m)),
)
o1() = () +6, ea=[x1].

Let S={l|e=1}, T={l|e=—1}. We obviously have mESNT, and from
(5.2), n&SNT. Let 'ES and I"ET. Then ¢:(I') —1(I") =) +0+(1'") —0
=¢(l")+¢(l'"). But we also have either

01(l) — ¢a(') = $() — (")
or
o1(l) — () = — (') + ¢(").

In the first case we get 2¢(/’) = [0], (') =[0] or [r], I'"=m or n, and I ES;
in the second case I’&T. Hence, either S or T contains all the elements of B,
and ¢; is uniformly [1] or [—1]. This proves the theorem.

The intuitive content is clear. Two coordinate functions for a bundle are
related in such a way that one can be deduced from the other by a rotation of
the protractor (graduated from 0 to 27) or an inversion of the protractor fol-
lowed by a rotation. The corresponding proposition for coordinate functions on
the lines is also true; the proof is almost the same.

COROLLARY 1. If m and n are two noncollinear half-lines of a bundle B, then
there exists one and only one coordinate function ¢ such that ¢p(m) =0 and ¢(n) <.
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Proof. Let ¢ &P. A necessary and sufficient condition for ¢ is that for some
eand 0

o) = eps(!) + 0
with
(5.3) (0] = eps(m) + 6,
o(n) = epi(n) + 6.
Eliminating 0 gives
d(n) = e(¢1(n) — ¢1(m)).

Since m and # are noncollinear, ¢y(n) —¢1(m)# [0] or [r], and hence there is a
unique choice of €= [ +1] such that ¢;(#) <. From (5.3), 0 is then also uniquely
determined.

We can here observe that the measurement of angles can be conceived
intuitively as being obtained in the usual way, that is to say, application of a
protractor (plain or half-disk) in such a way that one side of the angle coincides
with the zero of the protractor and such that the other side corresponds to a
number less than 7 (the measure of the angle).

COROLLARY 2. If I, m, n are distinct elements of a bundle, and if I and n are
collinear, then Llm+ Lmn=m.

For if ¢ is the unique coordinate function such that azl—j=0 and ¢(m) <,
then ¢(n) =7 and ZLlm-+ L mn=m.

COROLLARY 3. If I is a half-line of a bundle B, and if o is a positive real number
less than w and different from zero, then there exist two and only two distinct half-
lines m, n such that Llm= Liln=a.

Proof. If ¢ is a coordinate function for B, such that ¢(!) =0 then there exist
half-lines m and # such that ¢(m) = —¢p(n) = [a]. Half-lines m and » have the
required properties.

A triangle is an unordered set of three distinct points. The points are the
vertices of the triangle. The three segments defined by the vertices of a triangle
are the sides of the triangle. The three angles defined by the sides of a triangle
are the angles of the triangle. In the context of triangles, for instance a triangle
ABC, the measure of an angle, say angle 4 BC with vertex B, will be denoted £ B
instead of ZABC. Two triangles are similar if the vertices can be labelled
4, B, Cand 4’, B/, C’ in such a way that '

(a) AB/A'B' = BC/B'C' = CA/C'4’,
(b) LA= LA, LB= LB, /LC= /LC.

The constant ratio in (a) is called factor of proportionality. A triangle is proper if
the vertices are noncollinear.
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SiMILARITY AXTOM. If two triangles ABC and A’B'C’ are such that AB/A'B’
=BC/B'C' and £B= £LB', then they are similar.

6. Theorems on triangles.
TueoRrREM 4. If two proper triangles ABC and A'B'C’ are such that LA= LA’

and LB= LB, then they are similar.

TuEOREM 5. If ABC is a proper triangle, then the sides AB and AC have equal
length if and only if LB= LC.

The proof of Theorem 4 and Theorem 5 can be found in [1].

LeEMMA 1. Let I be an element of a bundle B, and let o, (3 be two numbers between
zero and w. If m is a half-line of B, such that Zlm =, then there exists a half-line
n of B, with the following properties: (a) Zin=_P, (b) for all points AEm and for
all points BEn such that A # B the segment AB has a point P in common with the
unique line containing the half-line 1.

Proof. Let ¢ be a coordinate function such that ¢(I) = [0] and ¢(m) = [a].
Let n be a member of B, such that ¢(n) = [—8].
Case 1: a+B<m. We have

(¢(m) — o) + (¢() — ¢(n)) = ¢(m) — ¢(n),

ie. [a]+(=(-B]))=[a]—[—-8], and ZLim+ Lin= Lmn.
Case 2: a+B>w. Let I5#1] be the half-line of B, collinear with ; ¢() = [r].
Then

@) — ¢(m)) + (¢(n) — ¢(D) = ($(n) — ¢(m)),

ie. ([r]- ) +(([=BD = [rD = [-B—al=[r—(@+B)], [27—(@+B]<m,
and Zim+ Lin= Lmn.

In both cases, the continuity axiom implies the desired result.

Case 3: If a+B=m, then Theorem 1 implies that O is between A and B,

THEOREM 6. If the triangles ABC and A’'B’'C’ are such that AB/A'B'=BC/B'C’
=CA/C'A’, then they are similar.

Proof. Case 1: A, B, and C are not collinear. Let By, be a bundle of vertex
A’ containing the half-lines 4’B’ and A’C’. Let I be a member of B4 such that
(a) ZI(A'C"y= £LBAC, (b) the segment B’B", where B” is on ! and 4’B”
=A'B’, has a point P in common with the line A’C’ (the existence of [ is a con-
sequence of Lemma 1). The triangles ABC and 4’B"'C’ are similar (similarity
axiom). Consequently

AB/A'B" = BC/B"C' = CA/C'A’ = k= CA/C'A’ = BC/B'C’' = AB/A'B,
and C'B’'= (C'B". The triangles B’A’B’’ and B’C’B"’ are isosceles and by Theo-
rem 5 LA'B'P=/LA'B"P, LC'B'P= LC'B"P.

If the collinear points A’, P, C’ are distinct, one of them is between the two
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others, and the continuity axiom implies that ZA4'B'C'= £LA'B"C’ (e.g. if P
is between 4’ and C’ then

[£4'BP+ £PBCl=[£A4'BC'] and [£A'B"P+ LPB'C]=[£4"B"C],
so that LA'B'C'= £LA'B"(’). If P coincides with 4’ or with B’ the same is
obviously true. This proves that the triangles ABC and A’B’C’ are similar.

We observe that if 4, B, and C are not collinear, then 4’, B, and C’ are also not
collinear.

B

i

Cl

AI

FiG. 2

Case 2: A, B, and C are collinear. In this case, 4’, B’, and C’ are also col-
linear. As 4, B, and C are distinct, one of them, say B, is between the two others.
It is sufficient to prove that the corresponding point B’ is between 4’ and C'.
Remembering that for collinear points 4’, B’, C’, the point B’ is between the
points A’ and C’ if and only if A’B’+B’C'=C'4’, we can see by the relations

AB BC AB + BC AC

A'B’ - B'C’ - A/B'/_I_ B/C/ A'C’

that if B’ were not between A’ and €’ we would have a contradiction.
THEOREM 7. The sum of the measures of the angles of a triangle is equal to .

Proof. We consider first the case where the triangle is a proper triangle with
vertices 4, B, and C. Let 4’, B/, C’ be the midpoints of the segments BC, CA4,
and A4 B respectively.

By multiple applications of the continuity axiom, we obtain:

1) A’ between B and C implies the existence of a point E on line 44’ and
on line BB’ between B and B’;

2) B’ between 4 and C implies the existence of a point E’ on line BB’ and
on line AA’ between 4 and A’; ABC being a proper triangle, E=E';
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3) A’ between B and C implies the existence of a point D on line 44’ and
on line C'B’ between C’ and B’;

4) C’ between 4 and B implies the existence of a point D’ on line AE and
on line C'B’ between A and E; again ABC being a proper triangle, D=D’.
Furthermore E between 4 and A’ and D between 4 and E imply that D is
between 4 and A4’. Then

[£AB'C'+ £A'BC'] = [£ 4B A’]

ie., LAB'C'+ LA'B'C'= LAB'C' (for LAB'C'<m, and ZA'B'C'<w), but
LAB'A'"+ LA'B'C=7 and consequently ZAB'C'+ LA'B'C'+ LA'B'C=nm.
The triangles ABC, AB'C’, A’BC’, and A’B’C’ being similar,
LABC' = LC, LA'B'C' = /B,
LA'BC= LA, LA+ LB+ LC=m.

B

Fi1G. 3

To complete the proof, we observe that if the triangle is not proper, then
one angle has for measure 7 and the two others have for measure zero.

As in [1] congruence of triangles is defined by similarity together with a fac-
tor of proportionality k& equal to one.

Two distinct lines having a point in common determine six angles with
nonnull measures. Two have 7 for measure and we can easily show that the four
remaining ones form two sets, each set consisting of two distinct angles with the
same measure. Two distinct lines having a point in common are said to be
perpendicular if the four angles with measures different from zero and different
from 7 have the same measure i.e., 7/2.

LemMA 2. If L is a line and P is a point not on L, then there exists one and
only one line containing P and perpendicular to L.

Proof. Let A be an arbitrary point of L. There exists one and only one bundle
of vertex A containing the lines L and 4 P. We shall denote this bundle by B..
Let /’ be the unique half-line of By, distinct from AP, such that ZII' = ZL1(AP)
where [ is one of the half-lines with end-point 4, determined by the line L and
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the point 4. There exists on /' a point P’ such that AP’ =A4P. Lemma 1 implies
that the segment PP’ has a point I in common with the line L.

P

Fi1G. 4

If I A, then the proper triangles API and AP'I are congruent and ZAIP
= LAIP'=m/2 and PP’ is perpendicular to L. If =4, then PP’ is also per-
pendicular to L. Furthermore, this perpendicular is unique because if there were
to exist another perpendicular PI’ to L the sum of the measures of the angles
of the triangle PII’ would be greater than 7.

A triangle is right-angled if one of its angles has measure /2.

LeEMMA 3. If a triangle ABC is right-angled at A, then the unique perpendicular
from A to the line defined by the vertices B and C meets this line in a point D between

Band C.

N>~ t

\ ~

I\ :

I\ |

I\ \‘\

L. A

D B D C

FiG. §

Proof. If D coincides with B or with C, then the triangle would have two
angles with measure 7/2. If B were between D and C, we would have
[£DAB+w/2]=[4DAC], so that ZDAC>m/2; the right-angled triangle
DAC has then for sum of measures of its angles a number greater than m, which
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is a contradiction. In the same way, C cannot be between B and D, and D is
between B and C.

TueoreM 8. If a triangle ABC is such that LA =mw/2, then (AB)*+4(AC)?
=(B(C)2

Proof. Let AD be the unique perpendicular from A4 to BC (Fig. 5). The tri-
angles CAD and CBA are similar (Theorem 4), and

(6.1) CDJ/AC = AC/BC.

In the same way the triangles ABD and CBA are similar, and as D is between
B and C, we have

(6.2) (BC — CD)/AB = AB/BC.

The elimination of CD between (6.1) and (6.2) gives the desired relation.
CoroLLARY 3. If A, B, and C are distinct points, then

6.3) AB+ BC =z AC.

The equality holds if and only if the points A, B, C are collinear with B between
A and C.

Proof. If A, B, and C are collinear, then AB+BC=AC. The equality holds
if and only if B is between 4 and C. If 4, B, and C are not collinear, let B’ be
the point of intersection of the unique perpendicular from B to 4C with AC.
Then Theorem 8 implies AB>AB’, BC>B'C, and AB+BC>AB'+B'C=AC
(B’ being between 4 and C or not). If 4, B, C were not collinear and if A B+BC
=AC, then we would have a contradiction.

CoROLLARY 4. Distance on the set of all points is a metric on this set, that is to
say, AB=BA, AB4+BCzZAC, AB=0, and AB=0 if and only if A=B. .

7. Parallel lines, and the concept of plane. A plane is defined to be the class
of all points belonging to the half-lines of a bundle B,; this class will be denoted
by {Bo}.

THEOREM 9. If two distinct points of a line are in a plane, then the whole line
s in the plane.

Proof. We know by the continuity axiom that if two distinct points P and B
belong to a plane (Fig. 1), the points of the segment PB belong to the plane.
If 4 is a point of the line PB not on the segment PB, then P is between 4 and
B or Bis between 4 and P; let P be between 4 and B. Then the half-lines 04
and OB, where O is the vertex of the bundle B, defining the plane, belong to a
unique bundle B,, and the continuity axiom implies that the half-line OP is a
member of B,. Then B,=B,, and the line 4B is in the plane {B,}.

We shall now prove that a plane is uniquely determined by three non-
collinear points. The proof will be preceded by two lemmas.
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LemMA 4. If two bundles B, and By are such that O=0', if there exists a point
A such that A is not on the line 00', and if 4, 0, O' € { B} \{Bu }, then the planes
{B,} and {Bo} coincide.

I i

h

F1G. 6

Proof. Let X be a point of {By},i.e.,a point of a half-line of B,.. We want to
prove that X also belongs to {B,}. As the points of the lines 00’, 04, and 40’
belong to {B.}, it is sufficient to show the existence of two distinct points of
the line O’X which belong to {B,}. As 0’ already belongs to {B,}, it remains
to prove the existence of another point of O’X belonging to {Ba} .

Let ¢ be the coordinate function for B, such that ¢(0'0)=¢(l)=[0] and
¢(0'4) =¢(L) = [a], @ <. Then if we denote by J and /3 the distinct half-lines
of 0’X with vertex O, ¢(I{) or ¢(%2) is between 0 and 7 (otherwise, X belongs to
the line 00’ and X € { B, } ). Let ¢(I ) = [8], B <, then either « is between 0 and
B, or else B is between 0 and « (otherwise =3 so that X is on the line 0’4 and
XeE {Bo}). Let « be between 0 and 8, then

(18] =[] + (] - [0])

(Is] — [oD,

ie.,
(6(75) — ¢(12) + (¢(2) — ¢(l) = (¢(t{) — ¢(1)),

so that [ Z¥{ I+ £ZLl]=[ £l 1]. The continuity axiom implies that there exist
points B, C, D on I, I, and IJ respectively which are collinear. As B, C& {Bo},
D is the required point, X& {B,}, and {Bw} S {B,}. Similarly if 8 is between 0
and ¢, {Bo/} c {Ba}. By symmetry {B.,} C {Bo:}.

If two lines of a plane have no point in common, then they are parallel.

LeMMA 5. If B, is a bundle, P is a point of {Bo} different from O, and L is a
line defined by a half-line of B, not containing P, then there exists one and only one
line in' { B,} containing P and parallel to L.
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The proof of this lemma can be found in [1].

THEOREM 10. Two planes coincide if and only if they have three noncollinear
points in common.

Proof. Let B, and B, be two bundles such that the three noncollinear points
A, B, Cbelong to { B,} N\ { B }. We shall prove that if X& { B+ }, then X € { B, }.
Suppose that X& { B, } so that X belongs to a half-line /; of B, At least one
of the three points 4, B, C, say A4, is not on the line [ containing /,. Let L be a
line in {Bo'} containing 4 and parallel to I. If B and C are not on L, then the
lines A B and A C meet ! in two distinct points U and V (Fig. 7); as U, VE { B.},
then XE{BO}. If Bor C, say B, is on L then C is not on L and the lines AC
and BC meet ! in two distinct points V and W. V and W being in {B.},
X&{B,}. In the same way {B,} Z{B.}, and {B,}={B.}.

Fic. 7

The results of Lemmas 2 and 5 can now be formulated in a more general
form as follows:

TrEOREM 11. In a plane, from a given point not on a given line there exists one
and only one perpendicular to that line, and from a given point not on a given line,
there exists one and only one parallel to that line.

The following theorem is an immediate consequence of the continuity axiom.

THuEOREM 12. If three distinct points A, B, and C do not lie on the same line,
and if D and E are two points such that C is between B and D, and E is between
A and C, then there exists between A and B a point F such that D, E, F lie on the
same line.
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8. 3-dimensional euclidean space. The following axiom is now added to the
structure.

S. There exists a point not on a given plane.

The 3-dimensional euclidean space is introduced as defined by O. Veblen
in [4]. A set of four noncoplanar points is called a tetrahedron whose faces are
the interior of the triangles defined by the elements of the tetrahedron (the
interior of a proper triangle 4 BC is defined to be the class of points P between X
and ¥, where X and ¥ belong to different intervals defined by the points 4, B,
and C). A 3-space ABCD is the set of all points collinear with any two points of
the faces of the tetrahedron ABCD.

Except for the Axiom X, the remaining eleven axioms given in [4] are
either a property of real numbers, a consequence of a definition given here, or
one element of the following list of axioms and theorems: Ly, Ly, L, S, Theorem
11, and Theorem 12. The Axiom X says that all points belong to the same 3-
space. We have then in [4] the proof of the following property concerning
categoricity:

TueoreM 13. If My and M, are two models of a given 3-space, then they are
isomorphic.

I wish to acknowledge my indebtedness to the referee. I owe to him in particular the present
formulation of Theorem 2 and its corollaries.
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ON THE INEQUALITY OF KANTOROVICH
E. F. BECKENBACH, University of California, Los Angeles

1. Introduction. For any positive numbers (x) =(x1, %2, * * * , %a), #>1, and
positive weights (@) = (ou, 02, - * +, ot), ZZ‘,, o;=1, we define the mean of order
¢}, — o <t < o, of the numbers (x) with weights () by

n 1/t
M(x; ) = ( Z a,-x:)

=1

for ¢ finite and #0, and otherwise by
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Mo(x; a) = H x:‘;

=1

n
M_.(x; @) = min x,,
i=1

M (x; @) = max %i.
1=1

The familiar harmonic, geometric, and arithmetic means are included as
the special cases = —1, 0, and 1, respectively.

It is easy to show that lim,. . M(x; a@)=M_.(x; @), lim,.. M.(x; o)
= M.(x; ), and it readily follows from I'Hospital’s rule that

lim M.(x; @) = Mo(x; o).
1—0
Thus M.(x; ) is a continuous function of ¢ in the closed interval [— o, o]

If all the x; are equal, x;=%, for i=1, 2, - - -, n, then we have M,(x;)
=x, for all £; otherwise, as is well known [4, p. 17; 11, p. 26], M,(x; @) is a strictly
increasing function of ¢. In particular, this statement implies the classical in-
equality between the geometric mean M,(x; &) and the arithmetic mean
Mi(x, @), namely Mo(x; @) £ Mi(x, o), with equality if and only if all the «;
are equal.

In the present paper we are concerned with lower and upper bounds of the
ratio M,(x; &)/ M,(x; a), for arbitrary » and s, — © =7 <s= «, and for positive
x; subject to certain additional constraints.

Lower bounds are discussed in Section 2. It follows from the monotonicity
property of M.(x; ), mentioned above, that we have

M, (x; @)
Mr(x; a)

with equality if and only if all the x; are equal. We do not, however, assume
the validity of this result; rather, it appears as a special case (the Corollary to
Theorem 1) of a general inequality that is established below, in which some of
the x; are fixed, x;=c¢;, =1, 2, - - -, m, and others are allowed to vary freely,
0<x;<w,i=m-+1, m+2, - - -, n. The proof of Theorem 1 implies a new and,
in the author’s estimation, illuminating derivation of the much-proved [5, p. 54]
inequality between the geometric mean and the arithmetic mean.

In Section 3 we turn to a consideration of upper bounds. If the positive
variables x; are not further constrained, so that the ratio of the largest to the
smallest x; is not bounded, then neither is the ratio M,(x; o)/ M,(x; o) bounded.
Accordingly, for given positive numbers 4, B, with 0 <A <B, we consider vari-
ables x; constrained by

1 0<A<ua;<B, i=12---,n

=1 forr<s,
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This is a reasonable restriction in many applied problems.

For numbers x; subject to the above constraint (1), and for = —1, s=1, the
inequality of Kantorovich [14, 15] gives an upper bound to the mean-value
ratio, namely

Mi(w;0) _ (44 B)*
M_i(x;0) ~ 4A4B

Numerous proofs of the inequality of Kantorovich have been given, and the
inequality has been generalized in various ways (see the bibliography at the
end of this paper). In particular, an upper bound, including that of Kantorovich
as a special case, has been obtained by Cargo and Shisha [6] for arbitrary finite
r<s.

If, now, some of the x; are fixed, say x;=¢;, A =¢;<B,:=1,2,:--,m,and
only the rest allowed to vary, then new upper bounds, usually more restrictive
than those of Kantorovich and Cargo-Shisha, can be expected. Such upper
bounds, including those of Kantorovich and Cargo-Shisha as special cases, are
established in Section 3.

The methods of the present paper can be applied to yield analogous exten-
sions of the inequalities of Hélder and Minkowski, as we shall show elsewhere.

2. Lower bound. Letting the symbol M (¢, x; &) denote the mean of order ¢
and weights (@) of the vector (c1, ¢, * * * , Cm) Xmt1, Xmt2y * * * , X¥n), We NOW estab-
lish the following result.

THEOREM 1. Let there be given positive weights (o) = (a1, az, * * *, Q)
> ias=1, n>1, and positive numbers (c)=(c1, ¢z, * * *, Cm), 1Sm<n. For
any positive numbers (x) = (Xmi1, Xmy2, * * 4 Xn), and any indices v and s, — o =r

<s= o, we have

M. (c,x; ) - M(c, ¢; a)

(2 = )
M(c,x;0) — M(c,¢; )
where, except for the combination r= — o, s= o, each component ¢;, j=m-1,
m=+2, - - -, n, of (¢)is given by
ﬂf .
min ¢;, = — o, s finite,
i=1
m R 1/(s—r)
S, QiCy
L i=1 .
3) G=C={|l— r and s finile,
r
E Qs
=1
m .
max ¢;, r finile, s = oo,
i=1
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and where, for r= — © and s= », each component &; of () is arbitrary, j=m-+1,
m—+2, - - -, n, subject only to

"! m
4 min ¢; < é; £ maxc;.

t=1 i1=1

The values ¢; given by (3) satisfy (4). Egquality holds in (2) if and only if each
x;=¢Cj=m+1,m+2, - - -, n, except that for r=— © and s = «© equality holds if
and only if each x; satisfies

m m
() min ¢; £ x; £ max ¢, j=m+L,m4+2, 0, n
i=1 i=1

Proof. First, to show that the values ¢;=¢ given by (3) satisfy (4) for r and s
finite (the other cases are immediate), let

Wf m
¢ = min ¢;, b = maxec;.
i1=1 t=1
Then we have
m 1/(s—~r)
. > ailei/a)®
c i=1
; - m
> aici/a)T
7=1

Since ¢;/a=1 and s>, it follows that (c;/a)*"=1, (¢;/a)* = (c;/a)’, whence we
get ¢/a=1, with equality if and only if c;=¢;= - - - =¢n=a=¢. Similarly, we
obtain ¢/b =1, again with equality if and only if all the ¢; are equal, =1, 2, - - -,
m.

For additional properties of the mean-value function ¢, see [3, 8].

Define f(c, x; «; 7, s), or briefly f(x), by
M,(c,x;a
©) S = 1= Ei - a; :

For 7 and s finite and 7550, and for each j, j=m-+1, m+2, - -+ -, n, a computa-
tion (cf. [6]) gives

(]
@) fi(®) = — f(x) = P;Q;,
ax,-
where
—1 m . n . 1/(s—1) m , n , —1/(r—1)
(8) Pj = a;%; ( Z oCq + E a,ﬂ:;) ( Z a;Cy + E a;x,-) ,
=1 t=m+1 =1 t=m+1

© o= ( el 3 aixz) - ( Sad+ 3 a)

=1 i=m+1 =1 1=m+1
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Since P;>0 for all positive (x), it follows from (7) and (9) that f;(x) =0 if and
only if

id 8 ki L
> aici + >

(10) x;-r — 1':1 t=m+1 .
>+ D, a
=1 i=m+1
Now the right-hand side of (10) is the same for all j, j=m+1, m+2, - - - , n,
and accordingly any solution %my1, Xmte, - * -, %, of the system of equations
(11) fm+1(x) =0, fm+2(x) =0, - -, fal®) =0,
must have all its components equal, say Xmi1=%m2= * - - =%, =4 From (10)

we then obtain

m s s n
i+ E D oa
=1

i=m+1

m r r n )
Za,-ci+£‘ Z a;

=1 t=m+1
Clearly, however, we have

n
x® Za.'

t=m+1
= —,

n
xr Za;

t=m+1

whence, from “proportion by division” [24], i.e., from the fact that

S

c—a
)
d—b

(12) 2 implies —
—_= mplies — =
b PSS

d
provided the denominators do not vanish, we obtain
hid 8
Z aic;

i=1
x-s—r *

= ——-m ; .
E aiCs

=1

Hence we have #=¢, where ¢ is given by (3), whence the system (11) has no
solution other than

(13) Imtl = Xmpe = * ° ° = Xp = C.
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That (13) does in fact furnish a solution to the system (11) follows, by (10),
from “proportion by composition,” wherein the minus signs in (12) are replaced
by plus signs.

Geometrically speaking, we have now shown, for 7 and s finite and rs0,
that there is precisely one horizontal tangent hyperplane to the hypersurface

S:y = f=), 0< 2 < o,

in the (Xm11, Xmy2, * * * » %n)-space, and that the point of tangency is the point
on .S at which each x;=¢.

We still have to show that there is a minimum value of y on S, namely the
corresponding

M(c,¢; @)
M. (c, ¢; ) '

For any numbers 4 and B satisfying the inequalities
(14) 0<4<¢<B,

=10 =

consider the (#—m)-dimensional cube I, p determined by the inequalities
AZLx; 2B, i=m+1, m+2,--., n. Let £ be a ray, or half-line, extending
perpendicularly from one of the coordinate hyperplanes and intersecting I4p;
thus ¢ is determined by

x">0: X; = %0, Aéx.-oéB, i;éj’

with x; varying, 0<x;< «, for some fixed j, m+1=<j=<n, and with x;=x
fixed, 4 Sx, < B, for all 75%].

Once more applying the principle of proportion by division, from (7)-(10)
we see that on { we have

fit®) =0

at just one point, namely at the point where

hid ] bid 8
D@+ O, aiti
=1 =mt1

i

kid r kid r
Z aici + Z QX0
i=1 f=m+1

)

1/(s—r)

¥; = Xjo =

We now show that x;, satisfies the inequalities
(15) 4 < x5 < B,

as follows. We have
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[~ m n 11/ (s—r)
2oai(ci/A) + X ai(wa/A)
= s=m+1

(16) wm_| 2 5
A m n

2 ai(ci/ )+ 2 au(ma/A)

| = i=mt1

L 15 -

From (3) we get

() - () B

therefore, since s—7>0 and 0<4 <¢, we have
m 61, k] m ci. T
17 z(_> > z(’—) .
(17) E i~ g @i\~
Since also 0 <4 Zx4, 1747, it follows that (x;,/A4)*" =1, 154, whence
n x10 8 n xzo r
18 a; ( ) = a; ( ) .
9 Zer) 2 2w
i%] 2
Hence, by (16), (17), and (18), we have x;0>A. Similarly, we obtain x;, <B.

The proof in the preceding paragraph could have been somewhat shortened
if we had further constrained 4 and B to satisfy the inequalities

1%

m m
0 < 4 < min ¢, B > max ¢,
i=1 i=1
instead of merely the inequalities (14), and this actually would have been suffi-
cient for our present purpose. The weaker hypothesis, however, gives a more
precise description of the physical situation.
Now on £ we have

(19) Q= x;_r< Z OéiC: + Z aixZO) - ( Z aic:- + E Otix:'o),
i=1 =1 =1 i1
$%5 155
which is a linear function of ;7". Since in (19) the coefficient of &{™" is positive,
and since s—7>0, it follows from (7), (8), and (19) that, on ¢, f is a strictly
decreasing function of x; for 0 <x;<xj, and a strictly increasing function of #;
for x;0<x;< .
By (15), then, on the line segment

4AB=€nIAB,

the function f assumes its maximum value only at one or both end points, and
its minimum value only at an interior point, of £4z.
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The following observations are immediate consequences of the behavior,
as determined above, of the function f on the line £:

(a) The function f assumes its maximum value on I3 at one or more of the
vertices (extreme points) of I45, and at no other points of I4p.

(b) The function f assumes its minimum value on T4z at no boundary point
of IAB.

(c) Both the maximum value of f on I45, and the minimum value of f on
the boundary of I4p, increase steadily as 4—0, 0<A4 <¢, and as B—>w, ¢<B
< 0,

Since there must be a horizontal tangent hyperplane at any interior mini-
mum point of the function f on .S, and since there is just one point, (¢, ), of S
at which there is a horizontal tangent hyperplane, it therefore follows from
observation (b), above, that on I,p the function f has a unique minimum,
namely at (x) = (¢).

Letting 4—0, 0<4 <¢, and B> », (<B< », we conclude from (6) that,

for r and s finite, rs0, and for all positive x;, i=m-+1, m-+2, - - -, n, the in-
equality (2) is valid, with equality if and only if (x) = (¢).
The remaining cases, involving 7= — o, r=0, s=0, and s= ®, can be

treated by limiting processes, but then the determination of the conditions
under which the strict inequality holds are lost in the analysis unless special
devices are used. This situation is exemplified in the extreme case 7= —
s= =, in which “>” gives way to “=" for a continuum of values of the x,.

Direct methods, however, can still be used. For example, if s is finite, s>0,
and 7=0, then a computation yields

3
file, #5250, 5) = — f(c, x; 2; 0, 5) = P;Q;,
é)xj

where now
. 1 m . n . 1/(s—1) m @ —1 n s -1
1 1
P= (L wel+ 3 a) (1) (1=
=1 t=m+1 =1 i=m+1
(20) '
8 kid 8 2 s
Qi = x;— ( 2aci+ 2 am).
=1 t=m+1

As before, though P; is no longer of the form (8), we still have P;>0 for all
positive (x); and the expression (20) for Q; can be obtained by substituting =0
in (9). Hence the preceding analysis applies in this case. The case in which 7
is finite, » <0, and s=0, is similar.

If 7 is finite, 520, and s= «, then

max (c, x)
fle, %5057, ©) = )

m , n , 1/r
( 2 aci + 2 aﬂi)

i=1 t=m+1
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where

m,n
max(c, ) = max (¢, ;)
=1, J=m+1

Computations now yield
—1 m ’ n A —~1/(r-1)
fi = — ajx; max(c, x) ( Z aici + E a;x,~>
=1 s=m+1

for x; <max(c, x), and

m ’ n . —1/(r—1) m r n .

fi= ( 2aci+ 2 a.~x.-> ( 2oaici+ 2 a,-x,-)
=1 femt1 =1 Fa—

155
for x;=max(c, x). Hence we have

i <0 for xz; < max(c, %),
fi>0 for x; = max(c, %),
so that f is a decreasing function of x; for ¥; <max(c, x), and an increasing func-

tion of x; for x;=max(x) >max(c). Thus (2) holds in this case, with equality if
and only if each

m
% = max¢, Jj=m+i,m+2,---,n
{=1
The case r=0, s= », and the case r= — «, s finite, can be treated similarly.

Finally, for

max(c, %)
fle, %505 — 0, ©) = ———)
min(e, %)
we note from (4) that min(e, ¢) =min(c), max(c, ¢) =max(c). Accordingly, since
min(e¢, x) Smin(c), max(c, x¥) = max(c), with equality if and only if (5) holds, it
follows that (2) is satisfied also for r= — 0, s= 0, with equality if and only if
all the x; satisfy (5).

COROLLARY. For any positive numbers (x) = (x1, %3, * * + , %s), #>1, and any
positive weights (@) =(0a, @, * * *, Qn), D.r-i0i=1, the mean-value function
M(x; ) is a nondecreasing function of t for — o Zt= o, and is strictly increasing
unless all the x; are equal.

Proof. In Theorem 1, let (¢) =(x;) have just one member. Then by (3) and
(4) we have, foranyrand s, — 0 Sr<s= », =¢=%,j=2,3, + - -, n, whence
M(c, ¢; o) = M,(c, é; @) =x;1. Substitution in (2) now yields

Ma(x; a) > %1

= — = 1,
M(z;0) 21
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or M,(x; o) = M,(x; @), with equality if and only if x;=x= - - + =x,.

3. Upper bound. Let o=1— Y™, a;, let ap be any value satisfying 0 Sy <o,
and let the symbol M(c, 4, B; a, ao) denote the mean of order ¢ and weights
(o, o2y * ¢+, Otm, 0 —atg, o) Of the vector (cy, €2, * * * , Cmy 4, B).

It should be noted that here either one of the weights ¢ —a and o might be
0. We nevertheless retain the definitions of M_,, and M, given on the first page
of this paper, namely

21) M_.(c, 4, B; a, ) = min(c, 4, B), M.,(c, 4, B; a, ay) = max(c, 4, B),
though now we have only
lim M, 4, B;a,a)) = M_.(c, A, B; a, ay),

t——

lim M., 4, B;a,a0) = M(c, 4, B; o, ap)

t— 0
in place of the former equalities. The definitions (21) have been retained to
make the statement of the following Theorem 2 simpler than it otherwise would
be; further, with the definition (21) we have

lim M, 4, B;a,a)) = M_,(c, 4, B; o, o),
{—> = co
v—aq—vo*
lim M(c, 4, B;a, as) = My(c, 4, B; , 0),
t—
0(0"’0"

(22)

and these are the limiting processes with which we are actually concerned.
The following result includes the inequalities of Kantorovich and Cargo-
Shisha as special cases.

THEOREM 2. Let there be given positive numbers A and B satisfying 0 <A <B
< o, positive weights (o) =(au, ag, * * +, &), ZZ‘,I a;=1, n>1, and positive
numbers (c)=(c1, 3, + * +, Cm), 0=m<n. For any positive numbers (x)=(Xm1,
Xmi2y © 5 Xn) Satisfying A Sx;<B, j=m+1, m+2, - - -, n, and any indices r
and s, — o Sr<s=< o, we have

Ms(c’ x5 a) < MS(G, A; B;a, ao)

(23) = )
M. (c,x;0)  M.(c, A, B; e, )
where
0 ife<oO,
(24) =40 if0=0=o,
o if 0> o,

with o=1— D™, o;, and with 0 given by



616 ON THE INEQUALITY OF KANTOROVICH [June-July

. r( > et + .TA') s( > et + aA'>
(25) 0 - =1 _ =1
s—r Br — Ar Bs — 4¢

for v and s finite, rs=0, by respective limiting values of (25) for r=0 or s=0 and
the other finite, by 6=0 for 7 finite and s= , by 0=0 for r=— © and s finite, and

by 0=0/2 for r=— o and s= . For m=0, the value 0 always satisfies the in-
equalities
(26) 0=0=o.

Equality holds in (23), for r and s finite, if and only if there is a subset
(27) (kl)k%"':kp); Oépén—mr
of (m+1, m=+2, - - -, n) such that

b
(28) >, =anm,=Bfori=1,2,---,p, and x; = 4
=1
for all j in the complement of (ky, ks, + « - , k) with respectto (m~+1,m~+2, - - -, n);

for r=— o and s finite if and only if we have (28) and

m
min (¢;) = 4;
1=1

for r finite and s= » if and only if we have (28) and

m
max (¢;) = B;
i=1

and for r=— o, s= » if and only if we have
m,.n mn
min (¢, x;) = 4, max (¢iy %) = B.
t=1,1=m-+1 {1=1,J=m+1

Proof. Let us note first that the observation (a) in Section 2 is a consequence
merely of the fact that on 1 the function f first decreases as x; increases from 0
to xj0, and then increases as x; increases from x;o to .

From this observation, we see that the function f takes on its maximum
on I4p only at certain vertices of I4p. This is true in particular for the Kantoro-
vich and Cargo-Shisha case m =0, as we see by considering (x) as the cartesian
product of two nonnull factors, say (x1) and (xs, %3, * * * , ¥»); the maximum of
f is attained only on the vertices of each of the two factors for any fixed deter-
mination of a point in the other factor, and hence only on the vertices of the
cartesian product.

We accordingly consider the function g(%; ¢, 4, B; a; r, s), or briefly g(u),
defined for 7 and s finite, 7 <s, 7s#0, by
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m 1/s
l: > ;i + uB' + (0 — u)A':I
=1

) 0

IIA
E
IIA

(29) g(w)

o,

m 1/r
[ > awc; + uB + (o — u)A’]

1=1
and note that for some %y, 0=Z%o=<0, we have

(30) max f(x) = g(ug) £ max g(u).

z€laB 0=u=oc
A computation yields g’(#) = (u —60) N(u), where
m 1/(s=1)
(r—s)(B — 4B — A‘)[ > ac; + uB' + (o — u)A‘}

=1

N(u) =

mo . M G+D
rs[ > aw; + uB + (¢ — u)A]

1=1
and 6 is given by (25). Clearly we have N(u) <0 for 0 =« <o, so that
@) >0foruin (w<d)NO=uc=o),
gw) <O0foruin (u>0)MN 0= u= o).

Hence, with « given by (24), we have

31) [nax g(u) = gla).

Accordingly, for » and s finite, 7s%0, (23) follows from (6), (30), and (31),
with equality if and only if (28) holds.

In the special case m =0, we have =1, g(0) =g(¢) =1, whence (26) follows
from Rolle’s theorem.

We note incidentally that if there is no subset (27) of (m+1, m+2, - - - , n)
for which X 7_, o, =ag, then

MS(C’ x; a)
max ————

ZGIAB MT(C, x; a)

is attained with x,= B either on a set with sum as little less than «y as possible
or on a set with sum as little more than «, as possible; the two values must be
computed and compared.

All the foregoing analysis holds also in the case =0 and s finite, s>0, with
limiting values as r—0 given by

m 1/s
[ Z aic: + uB + (¢ — u)As:l
7=1

g(u) = ~ ’ 0=u=o,
Bqu‘-—-u H Cl:,‘
=1
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m 1/(s—1)
—(B' — 4")(log B — log 4) I: > i + uB' + (o — u)A‘]
=1

N(u) =

U o—u kid ag
B A C,"

=1

and

s( > aic; + 0A8>
i=1

1 1

s logB—]ogA— Bs — A¢

Similarly, for 7 finite, » <0, and s=0, we have

BuAa'—u H Ct:,‘
g(w) = —— = —, 0suso,
[ > aw; + uB + (o — u)AT:I
=1

N(u) again is negative, and

. r( 3 s + aA'>

0 i=1 1
r Br — Ar log B —log 4
The cases in which #= — », s= o, or both, can readily be checked by inspec-

tion.

The preparation of this paper was sponsored by the Office of Naval Research. Reproduction in
whole or in part is permitted for any purpose of the United States Government.
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A SIMPLIFIED PROOF OF THE DIVERGENCE THEOREM

DJAIRO GUEDES DE FIGUEIREDO, Instituto de Matematica
Pura e Aplicada, Rio de Janeiro

1. Introduction. Students of potential theory always wonder how to proceed
in order to prove the divergence theorem for some general class of regions in R*.
We think that our proof could supply them with one at the level of advanced
calculus. It is Whitney’s idea [1] to get the theorem for a general region using
partitions of unity and approximations, then reducing it to simpler regions. We
use this method here.

First we characterize the class of regions for which the theorem will be
proved. A set A4 is said to have p-content zero if for each >0 there exist ks
spheres of radius & that cover 4 and such that £;6°—0 as 6—0. A Gaussian region
is an open connected bounded set V in R*, whose boundary S is made up of two
parts, So and S;, such that: 1) S, is a closed set of zero (n—1)-content; 2) for
every point x of S; there exists a neighborhood N(x) such that N(x)N\S; is a
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regular element of surface; moreover, if we change variables so that x; is in the
direction of the exterior normal »(x) to Sy at x, then N(x)N\S is represented by
an equation x;="h(x,, - - -, %,), where % has continuous first order derivatives
and if (%1, %o, * + *+, X)) EN(x)NV then x; <h(xg, + - -, X,).

TuEOREM. Let V be a Gaussian region as defined above. Let F= (Fy, - - -, F,)
= F(x) be a vector function continuous and bounded in V\J.S; and with continuous
and bounded first order dertvatives in V. Then

(1) f divFdxs = | Fevio,
14 81

where v=v(x) is the unit exterior normal to Sy at x.
2. Proof of the theorem. Let us first establish (1) for some special regions.
LeEmMMA 1. Formula (1) holds for parallelepipeds V, and F as is Theorem 1.

This lemma can be proved easily by using iterated integrals.
A point (xe, - - -, x,) will henceforth be denoted by x’.

LeEMMA 2. Let V be the set of points x such that h(x') <x:<1 and —1<x’'<1,
where b has continuous first order derivatives in —1<x' <1. Let A be a curved part
of S, i.e., x1=h(x"). The function F is supposed to be continuous in V\JS, with
continuous and bounded first order derivatives in V and F=0 in some neighborhood
of S—A. Then (1) holds.

Proof. By the change of variables

Y11= 21— h(xl)’ y, = x’a

V goes into V'={y:0<y, <1—h(y"), —1<y'<1}. Let K denote the paral-
lelepiped 0<y; <1, —1<%'<1. Then the function G(y) = F(y;+(y’), ') can
be extended to the whole of K by defining G(y) =0 in K— V’, so that G(y) is
continuously differentiable in K. Applying Lemma 1 to G in K we get

(2) f divGdy = — Gi(v)dy',
K 4

where A4’ is the image of 4. By examining the effect of the change of variables
on the two integrals in (1) we see that the left-hand sides (and right-hand sides)
of (1) and (2) coincide. This finishes the proof of Lemma 2.

LeMMA 3. Suppose that all the conditions of the theorem are fulfilled and, more-
over, that F=0 in some neighborhood N of S. Then (1) holds.

Proof. For every point ¥ in V— N we can find a cube U centered at this point
and contained in V. On the other hand, for every point % in S— N we can find
a cube U with one side parallel to »(x) and such that UN V is a region of the type
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of that in Lemma 2. Since (V\US) — N is compact we can find a finite number
of such cubes U; (j=1, - - -+, p) whose union covers this set.

Now we determine p cubes U/, (j=1, - - -, p) such that U} CUj;, U/ has
sides parallel to U; and these cubes also constitute an open covering of (V\US)
— N. A partition of unity for the covering (U/) is constructed as follows. Let «;
be a C.-function such that a;=0 outside U/, and ;>0 in U/. It is clear that
the function a= Y ,a; is different from zero on (V\US)— N. Defining 8,=c;/a
we conclude that 1) 8; are C.-functions; 2) (8; are equal to zero outside U; and
in a neighborhood of the boundary of Uj; 3) D_B8;=1. Using this partition of
unity (8;) we see that (1) in this general case reduces to (1) for the particular
cases of Lemma 1 and 2.

LEMMA 4. Let A and B be two open sets in R™ such that dist (A, B) =d. Then
there exists an infinitely differentiable function ¢(x) such that

o(x) =01in A4, o(x) =1in B
and [ grad ¢(x)| <Fk/d, where k is a constant.
Proof. Let Y(x) be an infinitely differentiable function such that
Y(x) =0 for |a| =1

ft//(x)dx = 1.

Now we define C as the set of all points x such that dist(x, B) <d/2. It is easily
verified that the function ¢ defined by

o= () o)

satisfies all the requirements of Lemma 4.
In order to conclude the proof of the theorem we define two sequences of sets

and

1

A; = {x:dist(x,So)<—2—j} i=412---,
3

B; = {x:dist(x,So)>—2—j} i=12--

Using Lemma 4 we find functions ¢;&C,, that are 0 in 4, 1 in B; and such that
l grad ¢;(x) | < k271

Now ¢;F is a function like F of Lemma 3. By Lemma 3, therefore,

f div (¢;F)dx = ¢;F -vdo
v

5;
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or
f ¢; div Fdx + f grad ¢;- Fdx = ¢;F vdo.
14 14 Sy

It is easily seen that as j goes to infinity the first integral converges to [y div Fdx
and the last one to [, F-vdo, which can be taken as an improper integral.
If we show that

lim grad ¢;dx = 0,
jme Jy

the proof will be finished. Using the hypothesis on Sy we conclude that for each
0>0 the set 4, (of the points that are at a distance less than 8§ from Sy) is cov-
ered by k; spheres of radius 28. So the complement of B; can be covered by k;
spheres of radius 1/272, say, and k; is so related to j that

1 n—1
k,-(—-——) —0 as j— .

271

1 n—1 1 \r1
S k27t ke (——) = 2nckk; (—-—-—) ,
25 251

which goes to zero as j tends to infinity. Here ¢ is the volume of the unit sphere.

Using this we obtain

f grad ¢;Fdx
v

3. Two remarks about Gaussian regions. First we observe that the property
of having p-content zero is invariant under Lipschitz mappings.

Secondly, we may prove that a set 4 in R* has zero n-content if and only if
it has zero Jordan content.

As a consequence of the separability of R*, we see that S; is made up of a
denumerable number of regular surfaces 51 ;, each one an image by a mapping
F; of an open set 4; in (#—1)-dimensional space. In order to take surface inte-
grals in .S;,; we have to assume that 4; has Jordan content. This implies that the
boundary d4; of 4; has zero Jordan content. If we assume that the mapping F;
can be extended up to the boundary d4; in such a way that F; is a Lipschitz
mapping there, we conclude by the above observations that the boundary of
Si1,; has zero (n—1)-content.

From these remarks we conclude that any region in R* bounded by a finite
number of regular surfaces is a Gaussian region. This contains all regions usually
occurring in applications of the divergence theorem.

The author would like to thank Jaak Peetre for mentioning that the simple proof of Lemma 4
is due to Hormander.
Reference
1. H. Whitney, Geometric Integration Theory, Princeton University Press, 1957.



ON TRANSFORMATIONS IN R" AND A THEOREM OF SARD
T. M. FLETT, University of Liverpool

1. An elegant proof of the formula for change of variable in a multiple inte-
gral has been given by J. Schwartz [4] (see also Zaanen [5], p. 162) in which the
theorem is reduced to the following inequality:

THEOREM A. Let D be an open set in R*, let f be a continuously differentiable
(1-1) mapping of D into R, and let J(x), the Jacobian determinant of f at x, be
nonzero on D. Then for any measurable subset E of D the set f(E) is measurable and

(1.1 w5 [ 76| a5

where m denotes n-dimensional Lebesgue measure.

It is, of course, true that under the hypotheses of Theorem A we have equal-
ity in (1.1), but the weaker result stated in Theorem A is sufficient for the proof
of the formula for change of variable.

A complement to Theorem A is provided by a theorem of Sard (see, for
example, de Rham [3], p. 9) which states

THEOREM B. Let D be an open set in R*, let f be a continuously differentiable
mapping of D into R™, let J(x) be the Jacobian determinant of f at x, and let E, be
the set of points x of D for which J(x) =0. Then f(E,) is of measure zero.

Extensions of Theorem B under less restrictive conditions have been given by
Rado and Reichelderfer, and in particular it has been shown that Theorem B
holds if f is merely differentiable on D ([2], pp. 339, 343). Here, however, we
restrict ourselves to the case stated above, which is the case most often used in
the theory of differentiable manifolds.

The result of Theorem B is most naturally viewed as an extension of the
inequality of Theorem A to the case in which J(x) vanishes at points of D, and
indeed Theorem B shows that (1.1) continues to hold in this case. It is also clear
that we can remove the hypothesis in Theorem A that f is (1-1), for if f is not
(1-1) the integral [ EIJ (x)|dx is equal to the measure of f(E) with multiply-
covered volumes being counted multiply. We are therefore led to the following
theorem, which contains both Theorems A and B.

TuEOREM C. Let D be an open set in R*, let f be a continuously differentiable
mapping of D into R", and let J(x) be the Jacobian determinant of f at x. Then for
any measurable subset E of D the set f(E) is measurable and

(1.2) ne) < [ 176

Theorem C is a simple consequence of theorems of Rado and Reichelderfer
[2, p. 363], but these theorems themselves use difficult ideas involved in the

623
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algebraic topology of R We can also use Schwartz’s elementary proof of
Theorem A to deal with the subset of D in which J(x) 0 and then appeal to
Theorem B to complete the argument. However, since Sard’s Theorem B is it-
self an immediate consequence of Theorem C, it seems worth while to give a
direct and elementary proof of Theorem C, and this is the purpose of this note.
It will be seen that the proof depends on a simple geometrical inequality in
which the form of the result is the same whether J(x) is zero or nonzero, and
that this inequality leads easily to a form of (1.2) with the measure 7 replaced
by outer measure (Lemma 5). It is only in the proof of the measurability of f(E)
(Lemma 6) that we reduce to the case in which J(x)0, and even here this
reduction could be avoided by the use of more difficult ideas.

2. We begin by recalling a few definitions. For any point 7, of R* and any

set of # linearly independent vectors as, - - -, a, in R®, the parallelotope P with
inatial vertex vo and edge-vectors a,, - - -, @, is the set of all points of R” of the
form

%=+ 2, N,
=1
where Ay, - - -, N, are real numbers such that 0S\;<1,4=1, - - -, n. The point
vo+3 D", a;is called the centre of the parallelotope.
For fixed k the set of those points of P for which A has a fixed value equal
to either 0 or 1 is called an (n—1)-dimensional face (or, briefly, face) of P, so
that the number of faces of P is 2x#. The point

1 n
7)0+)\kak+'2—zai

=1
1%k
is called the centre of the face.
It is immediate that the parallelotope P with initial vertex at the origin and
edge-vectors a,, « + +, @, is the image of the unit cube

C=f{o=(@ - ,eM:050i<1,i=1,---,1}

under the nonsingular linear transformation 4: R*—R" given by

h(x) = h(xly Sty xn) = Z xia’i’
i=1

and equally the image of the unit cube by any nonsingular linear transformation
of R” onto itself is a parallelotope of this form. It follows that P is compact,
and that the frontier of P is the union of the 2z faces of P; also (see, for example,
Zaanen [5], p. 160) the n-dimensional measure of P is equal to ldet (h)[
= ]det (a{)] , where af is the jth coordinate of a; and obviously these last results
extend to a parallelotope with any initial vertex.

Throughout the following discussion we use the ordinary Euclidean norm
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for points of R* and the corresponding norm for a linear transformation of R”
into itself, and we denote the inner product of x and y by x-y. We use 4 (n) to
denote a positive constant depending only on #, not necessarily the same on any
two occurrences.

3. For our proof of Theorem C we require two simple geometrical inequali-
_ ties.

LeEMMA 1. Let F be a set in R™ contained in a hyperplane H, let xq be a fixed
point of F, and let ||x— x| <d whenever xE F. Let also G be the set of points of R
whose distance from F is less than 8. Then G is measurable (since it is open) and

(3.1) m(G) £ 27(d + 8)» .

It is evident that G lies between the two hyperplanes parallel to H and dis-
tant & from it, and to prove (3.1) we construct a parallelotope containing G with
two of its faces in these hyperplanes.

By a suitable translation we may suppose that H contains the origin, so
that H is an (z»—1)-dimensional vector subspace of R». We can therefore find a
unit vector a; such that x-a;=0 for all x€H (i.e. such that @, is orthogonal to
H), and then we can find vectors ay, ¢ - -, @, such that {al, Qg * 0, a,,} is a
complete orthonormal set in R”. Let now yEG. Since every vector in R” can be
expressed as a linear combination of the a;, there exist real numbers Ay, « « + , Ay
such that

Yy — Xy = Z)\a,

=1
Further, since the distance of y from F is less than §, there exists € F (possibly
identical with ) such that ||y —x|| <8, and then writing
y—x=(— %) — (x — %),
we obtain M= (y—x0)-a1=(y—%)-01— (x —%0) -a1=(y—x)-a;, whence l)‘l l s
lly =2l {|aal] = [l — [l <8. Also
ly =l = lly —of +]ls — =l <5+,
so that for 1=2, - + -, m,

IN] = 16— 2] =lly—allled] =[ly — = <2+

It follows that G is contained in the (fixed) parallelotope with centre %o and
edge-vectors 28ay, 2(d+8)a;, i=2, + - -, m, and since the measure of this paral-
lelotope is 2"(d+6)"‘18| det (a{)l —-2"(d+6)"~18 the result follows.

LEMMA 2. Let b be a linear transformation of R* into itself, let P be the image
by b of the unit cube C= {x=(x1, e, x): 05551, 4=1, - - -, n}, and let Q
be the set of points of R™ whose distance from P is less than 8. Then Q is measurable
(since it is open) and m(Q) < | det (k) | +4 (n) (|| h]| 4-8)—6.
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Suppose first that det (k) =0, so that % is singular. In this case P is contained
in a hyperplane, and we apply Lemma 1 to F= P, taking x, to be the image of
the centre w, of C. Since

12Gw) = Bl = |htw — wo)l] < [[] [lw — wd| < v/

whenever wE C, we have ||x—w| <3+/n||h|| whenever xE P, whence Lemma 1
gives

m(Q) S 2G| K| + 8)*15 < A(m)(|H]| + 5)s,

as required.

Suppose next that det (k) 0. In this case P is a parallelotope with measure
m(P) = | det (k) |, and it is therefore enough to prove that the open set Q\P has
measure not exceeding A4 (n) (”h” +0)"~14. Since P is compact, for each yEQ\P
there exists € P such that ||y —#]| is equal to the distance of y from P, and evi-
dently x is a frontier point of P, so that x lies on one or more (7 — 1)-dimensional
faces of P. Since P has 27 such faces and each face is the image by % of a face
of C, it is now enough to prove that if B is a face of C and E is the set of points
of R* whose distance from k(B) is less than §, then

(3.2) m(E) < A(n)(|#] + 8)».

To prove this last result we observe that k(B) is contained in a hyperplane,
so that we can apply Lemma 1 to F=#k(B). We choose x, to be the centre of
the face h(B) of P, so that ||x— x| =1+/(n—1)||4|| whenever xEh(B), and then
Lemma 1 gives

m(E) £ 2°Gv/(n — D|[H]| + &) < Am)(||#]| + 8)»1s.

This proves (3.2), and completes the proof of Lemma 2.

In the case in which det (%) 0 it is tempting to estimate m(Q) by using the
inequality m(Q) <m(P’), where P’ is the smallest parallelotope containing Q
with sides parallel to those of P, but unfortunately the measure m(P’) tends to
infinity as we approach the singular case, i.e. as det (%) tends to 0 (this is easily
seen from a diagram illustrating the plane case). Most proofs of the change of
variable formula in which the estimate of the measure of a parallelotope appears,
do in fact use an estimate of the form m(Q) <m(P’), and it is for this reason
that the hypothesis inf | J (x)l >0 is essential to such proofs.

From Lemma 2 we deduce immediately:

LEMMA 3. Let C be a closed cube in R™ with sides parallel to the axes and of
length o, let h be a linear transformation of R into itself, and let Q be the set of points
of R" whose distance from the set h(C) is less than ad. Then Q is measurable (since
it 1s open) and

m(Q) = m(C){ | det (h)| + A@m)(|H]| + 6)=5}.

By applying Lemma 3 to the derivative of a differentiable mapping, we ob-
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tain the following result; in this we use the definition of derivative given by
Dieudonné ([1], Chapter 8).

LEMMA 4. Let C be a closed cube in R with centre xo and with sides parallel to
the axes, let f be a differentiable mapping of C into R, and let J(x) be the Jacobian
determinant of f at x. Then

(3.3) w*(f(C)) £ mO{ | J@0)| + 4@ (If @)l + 27},
where n=supzec ||f/(x) —f (x0)|| and m* denotes outer Lebesgue measure.

To prove (3.3) let a be the length of the sides of C, and let P be the image of
C by the linear transformation f'(xo): R"—R". By the mean value theorem
applied to the function f—f"(x¢) (cf. [1], (8.6.2)), we have for each x of C

@) = f@) — f'(xa)(x — 20)]| < allx — @of| < nav/n,

and this inequality expresses the fact that the point f(x) —f(xo) +f'(x0) (x0) of
the translate f(C) —f(xo) +f'(x0) (xo) of f(C) is at a distance less than na+/z from
the point f’(xo) (x) of P. It follows that this translate of f(C) is contained in the
set of points of R* whose distance from P is less than na+/n, and applying
Lemma 3 (and noting that det (f'(xo)) =J(x0)) we obtain immediately the in-
equality (3.3).

4. The remainder of the proof of Theorem C is similar to Schwartz’s proof
of Theorem A (cf. [5], p. 165), but we give it here for the sake of completeness.
We divide the proof into two further lemmas. It should be noted that Lemma 5
contains Sard’s Theorem B.

LEMMA 5. Let D be an open set in R™, let f be a continuously differentiable map-
ping of D into R*, and let J(x) be the Jacobian determinant of f at x. Then for any
measurable subset E of D

(8.1 R RECIES

where m* denotes outer Lebesgue measure.

Suppose first that E is a closed cube C with sides parallel to the axes. Since
f' is continuous on C, we can divide C into a finite number of nonoverlapping
closed cubes Cy, - « +, Cy with centers %1, * - + , xy and with sides parallel to the
axes such that Hf’(x) —f’(xk)H <ewhenever x&ECi(k=1, - - -, N). By Lemma 4,
for each cube C; we have

m*(f(Cy)) < m(C{ | T(@) | + 4},
where A4 is independent of %, so that also
m*(f(C)) £ L m*(f(Cw)) S 22| J(m) | m(Ce) + Aem(C),

the summations being extended over all cubes Cy. When the maximum diameter



628 TRANSFORMATIONS IN R™ AND A THEOREM OF SARD [June-July

of the cubes C; tends to 0 the sum ZI J(xx) ] m(Cy) tends to the Riemann inte-
gral of ]J (x)] over C, and since e is arbitrary we therefore obtain

) () s [ 136 ax

and this is (4.1) for E=C.

Suppose next that E is a measurable subset of D. Then we can find a set E;
containing E and with measure equal to that of E such that E, is the intersection
of a contracting sequence of open sets O, CD. If now Cis a closed cube contained
in D with sides parallel to the axes, then for each fixed # the set CM\0, is a
countable union of nonoverlapping closed cubes with sides parallel to the axes,
and applying (4.2) to each such cube and summing we obtain

wienons [ 17w
cno,,
whence also

(4.3) wiCeneys [ 1ie]a

cno,

(since ECQO,). Since J is bounded above on C, the integral on the right of (4.3)
is finite, and so tends to fanll J (x)[dx as n tends to + «, whence

m*(fCNE) S| |J@)]|dx = | 7(2) | da.
cNE, CNE

Since D is a countable union of nonoverlapping cubes such as C, the general
result (4.1) follows.

LEMMA 6. Let D be an open set in R”, and let f be a continuously differentiable
mapping of D into R*. Then f(E) is measurable for every measurable set ECD.

(For a proof under more general hypotheses see Rado and Reichelderfer [2],
pp- 337, 214.)

Let J(x) be the Jacobian determinant of f at x. It follows immediately from
Lemma 5 that if E, is the subset of D where J(x) =0, then f(£,) has measure 0,
so that m(f(EMNE,y)) =0 for every measurable ECD. Since D\E, is open, it is
therefore enough to prove the result when J(x)#0 on D.

Suppose then that J(x) 0 on D, so that f is locally a homeomorphism. The
open set D is a countable union of closed cubes, and, by the Heine-Borel theo-
rem, we can cover each of these cubes with a finite number of closed cubes on
each of which f is a homeomorphism. Hence D is a countable union of closed
cubes C; on each of which f is a homeomorphism, and since f(E) =Uf(ENC,), it
is enough to prove that f(EMNC) is measurable whenever E is measurable and C
is a closed cube in D on which f is a homeomorphism.
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If E is closed, so are ENC and f(EMNC), and hence if E is a countable union
of closed sets, then f(EMNC) is measurable. Since any measurable set is the
union of a set of measure zero and a set which is a countable union of closed
sets, it is now enough to prove that f(EMNC) is measurable when E is of measure
zero, and this follows immediately from Lemma 5. This completes the proof of
Lemma 6, and so also of Theorem C.
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THE COMPANION MATRIX AND ITS PROPERTIES
LOUIS BRAND, University of Houston
1. Companion matrix. The companion matrix of the polynomial
(1) JO) =M+ aNt 4+ a4 -t

is defined as

0 0 0
0 0 1 - 0 0
@) 4=
0 0 o -+ 0 1
—@n —0Op-1 —Qp2**° —0a —a1

in which the first superdiagonal consists entirely of ones and all other elements
above the last row are zeros. The companion matrix of A+a; is [—a:]. The char-
acteristic equation of 4 is det(4 —\I)=0 or

—=A 1 o --- 0 0
0 —x 1 --- 0 0

0 0 0 -+ =A 1

—@n — @1 —Qp—g " —0z —G1— A
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If we multiply columns 2, 3, - - -, » of this determinant by \, A%, - - -, \*!and
add them to the first column, all elements of this column become zero except the
last which is now —f(\). Since the cofactor of this element is (—1)*+!, the char-
acteristic equation of 4 is

©) det(4 — M) = (—=1)f() = 0;

and since the highest common divisor of all cofactors in det(4 —\I) is clearly 1,
(3) is also the minimum equation of 4.

THEOREM 1. The companion maitrix of the polynomial f(\) has f(\) =0 for its
characteristic and minimum equations.

The companion matrix is singular when and only when a,=0; for det 4
=(—1)"a,.

The genesis of the companion matrix is evident when one replaces the linear
differential equation

4 f(D)x=0 (D= d/dl)
or the linear difference equation
(%) f(E)xn =0 (E=1+44)

by a system of # linear equations of the first order. In both cases the matrix of
the system is the companion of the polynomial f(\).
For example, the differential equation

2"+ ax’ + by’ +cx =0
is replaced by the system

¥ = y
y = 2
= —cx—by— az

whose matrix is precisely the companion of the polynomial A3+aX2+b\+c.
Similarly the difference equation

Xn+3 + A%nt2 + bxn+1 + CXp = 0

may be replaced by the system

Xny1 = Yn
Yat1 = Zn
Zntl = — CXn — by, — 03,

whose matrix is the companion of the same polynomial.
2. Eigenvectors. The equation f(A\) =0 may be written in the matrix form
(6) Ae(N) = Ne(N),
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where the column vector
e()‘) = (1; >‘y )‘2) R ) k”_l);

for the first #—1 equations are the identities Ai=\¢ (¢=1, 2, - - -, n—1) and
the last is
—0n = Guogh — -+ + - — @\ = A",

Thus if \; is an eigenvalue of 4, equation (6) is valid for A=X\;. Moreover, the
rank of the matrix 4 —\;I is always n—1 even when \; is a multiple zero of
f(\); for the minor of the element (1) has a determinant of value 1. The eigen-
value \; is therefore associated with just one eigenvector e;=e¢(\;); two eigen-
vectors are called equal if one is a scalar multiple of the other. We state this
result as

THEOREM 2. If the polynomial f(\) of degree n has m (Zn) distinct zeros \;
then its companion matrix has exactly m independent eigenvectors

n—1

2 .
(7) 6,'=(1,>\,~,>\,-,°-°,>\.- ): 1=1,2,---,m,
associated with the eigenvalues N1, Ny, * * * 5 Mo

These eigenvectors are linearly independent since the rank of the m Xn
Vandermonde matrix formed from their components is exactly .

3. Generalized eigenvectors. When the companion matrix has an eigen-
value \; of multiplicity &, \; satisfies the equations

fO) =0, f(A) =0, -, f&DQN) = 0.

The first of these equations is equivalent to the matrix equation (6); the others
are equivalent to matrix equations obtained from (6) by k—1 successive differ-
entiations with respect to \:

AeDQ) = NeDQ) + jeFDO), j=1,2,++-,k—1,
where e(®(\) means e(\). These are equivalent to the system

D\ eDO)  eG-D(\
OO _ | e20) | et

(8)

=12, k=1,

T it G-y
Thus when A=) is a k-tuple zero of f(\) we have the k equations
A e = Mey
A e = \ieg + €3,
9 A e3 = Mes + ey,

A e = )\18]; + €r—1,

where e;=¢(\;) is the eigenvector and
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e(d) ()\1)
j!

(10) €iy1 = ’ j=1)2"":k—1:
are, by definition, k—1 generalized eigenvectors associated with A;. Thus with
every k-tuple eigenvalue we associate k eigenvectors of which k—1 are general-
ized. We note that the way in which equations (8) are derived guarantees their
consistency. Moreover the k& vectors

2 3 n—1
81=(1, )‘1’ )‘1: )‘1; "'})‘1 )
2 n—,

€3 = (0, 1, 2)\1, 3)\1, tety, (n - 1))\1 2)
3 n—1 —3
€3 = (0: 0: 1) <2>)‘1, o '7( 2 >)\: )
n—1 n—k
8;,=(0,0,0,0, Tty k )\1)

are linearly independent since the rank of the 2X#» matrix formed from their
components is k; for the £ Xk determinant on the left has the value 1.

The entire set of # eigenvalues of 4, simple and multiple, are now associated
with » eigenvectors; m of these, given by (7), are the eigenvectors associated
with the m distinct eigenvalues, whereas the #—m remaining are generalized
eigenvectors of the type (10). The entire set is linearly independent and may be
used to reduce 4 to its Jordan normal form.

4. Reduction to the Jordan Normal Form. Let the X7z companion matrix
A have the eigenvalues Ay, g, - + -, N, written in an order of increasing multi-
plicity (such as 3, 1, 1, 2, 2, 2) and denote the associated eigenvectors, actual
or generalized, by ey, €, - + -, e, Since this set is linearly independent they
admit a reciprocal set e!, €2, - - -, e” defined by e;-ef=0]. Form the two nXn
matrices

B = (e1 63--+¢,) from thesn columns e;,
el
e2
B1l=|. from the # rows .
e’l

Then B='4AB=J will be in the Jordan normal form. The proof is immediate; for
B'AB = B~Y(Aei| dey| -+ - | Ae,) = (eide;)

has elements e?4e; which are precisely the elements of a Jordan matrix by virtue
of Equations (9). An example will make this clear.
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The companion matrix of A+1)A—1)(AN—2)2=N4—4N34-3N2 -4\ —4,
namely

0 1 0 O
o o0 1 0
A= ’
o 0 0 1
4 —4 -3 4
has the eigenvalues A= —1, \a=1, \3=2, \;=2. The associated eigenvectors are

€1 = 8(—1) = (17 _15 1) —1)
€ = 6(1) = (1, 1) 1’ 1)
€3 = 6(2) = (1, 2, 45 8)

ee = ¢(2) = (0,1, 4,12).
The matrix
1 1 1 0
-1 1 2 1
B = (e1 € ¢35 €4) = {01 o4 a4l
-1 1 8 12
and since de;= —ey, des=ey, Aez=2e;3, Aey=2e4+e;, the matrix
et Ae; -1 0 0 O
e2Ade; 0O 1 0 O
B714B = =
e3de; o 0 2 1
etde; O 0 o0 2

is in the Jordan normal form.

Of course the above procedure will reduce any matrix to the Jordan normal
form when the generalized eigenvectors are defined by equations (9). In the case
of a companion matrix, however, we have at once their explicit form given by
(10).

5. Inverse of a Companion Matrix. The polynomial

(11) M+ a4 B\ + o\ + d
has the companion matrix
0O 1 0 O
0O 0 1 0
A=
0O 0 o0 1

—d —¢c —b —a
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which may be obtained from I by the succession of row operations
A4 = (4 — 3a)(4 — 2b)(4 — 1¢)(—4d)(1432)1.
Here (1432) denotes a permutation of rows, (—4d) means row 4 times —d, and

(4—1¢) means row 4 minus ¢ times row 1. Hence, if d0, and we take the in-
verse operations in reverse order,

A1 = (1234)(—4/d) (4 + 16)(4 + 2b)(4 + 3a)I
or
—¢/d —bJd —a/d —1/d
1 0 0 0
0o 1 0 0
o o0 1 0

Thus the inverse of any companion matrix can be written down at once. It is
related to the companion matrix of the polynomial

(12) T VUL OO WL
d d d d

whose roots are the reciprocals of the roots of (11): The inverse of 4 is the com-
panion of the polynomial (12) revolved counterclockwise 180° about its center.

This paper was presented at the joint meeting of the Texas Academy of Science and the
Mathematical Association at Galveston, December 8, 1961.

THE WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION
L. E. BUSH, Kent State University

The following results of the twenty-fourth William Lowell Putnam Mathe-
matical Competition held on December 7, 1963, have been determined in ac-
cordance with the constitution of the Competition. This competition is sup-
ported by the William Lowell Putnam Intercollegiate Memorial Fund left by
Mrs. Putnam in memory of her husband and is held under the auspices of the
Mathematical Association of America.

The first prize, five hundred dollars, is awarded to the Department of Mathe-
matics of Michigan State University, East Lansing, Michigan. The members of
the team were S. E. Crick, Jr., R. E. Greene and W. A. Webb; to each of these
a prize of fifty dollars is awarded.

The second prize, four hundred dollars, is awarded to the Department of
Mathematics of Brooklyn College, Brooklyn, New York. The members of the
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team were William Kantor, Steven Sperber and Robert Zarrow; to each of
these a prize of forty dollars is awarded.

The third prize, three hundred dollars, is awarded to the Department of
Mathematics of the University of Pennsylvania, Philadelphia, Pennsylvania.
The members of the team were Larry Goldstein, Ralph Greenberg and E. Y.
Miller; to each of these a prize of thirty dollars is awarded.

The fourth prize, two hundred dollars, is awarded to the Department of
Mathematics of California Institute of Technology, Pasadena, California. The
members of the team were A. C. Hindmarsh, Kenneth Kunen and V. S. Poy-
thress; to each of these a prize of twenty dollars is awarded.

The fifth prize, one hundred dollars, is awarded to the Department of
Mathematics of Massachusetts Institute of Technology, Cambridge, Massachu-
setts. The members of the team were J. H. Spencer, Gordon Wassermann and
M. H. Weinless; to each of these a prize of ten dollars is awarded.

The five persons ranking highest in the examination, named in alphabetical
order, are Lawrence Corwin, Harvard University; S. E. Crick, Jr., Michigan
State University; R. E. Greene, Michigan State University; J. H. Spencer,
Massachusetts Institute of Technology; and Lawrence Zalcman, Dartmouth
College. To each of these a prize of seventy-five dollars is awarded. The William
Lowell Putnam Prize Scholarship to Harvard has been awarded to Mr. Crick,
who will begin his graduate work in the fall of 1965. The value of this scholarship
has been increased to $2500.00 plus tuition ($1520.00), making a total monetary
value of $4020.00.

The six persons ranking second highest in the examination, named in alpha-
betical order, are R, W. Herrick, Oberlin College; Kenneth Kunen, California
Institute of Technology; Gilbert Labelle, University of Montreal; Robert Lee,
Reed College; E. Y. Miller, University of Pennsylvania; and Josef Sukonick,
University of Pennsylvania. To each of these a prize of thirty-five dollars is
awarded.

The following teams, named in alphabetical order, won honorable mention: Cornell University,
Ithaca, New York, the members of the team being A. D. Jette, D. J. Kilbridge and J. T. Litman;
Harvard University, Cambridge, Massachusetts, the members of the team being Jeffrey Cheeger,
Melvin Hochster and John Mather; University of British Columbia, Vancouver, British Columbia,
the members of the team being S. A. Glass, Joanne McWhirter and Bent Petersen; University of
Colorado, Boulder, Colorado, the members of the team being J. M. Cushing, D. E. Maurer and
R. C. Misare; and the University of Montreal, Montreal, Quebec, the members of the team being
Luc Demers, Gaston Giroux and Cecile Mayrand.

Honorable mention is given to the following twenty-five individuals, named in alphabetical
order: Bruce Appleby, Massachusetts Institute of Technology; L. G. Brown, Harvard University;
N. H. Camien, California Institute of Technology; M. J. Cohen, California Institute of Technology;
David Ebin, Harvard University; P. J. Erdelsky, Case Institute of Technology; Daniel Fendel,
Harvard University; Gaston Giroux, University of Montreal; W. E. Heierman, Georgia Institute
of Technology; R. B. Hodges, Rice University; A. A. Iarrobino, Jr., Massachusetts Institute of
Technology; William Kantor, Brooklyn College; Frank Kaplan, City College; William Kennersley,
Rensselaer Polytechnic Institute; Gary Luxton, McGill University; Cecile Mayrand, University
of Montreal; V. S. Poythress, California Institute of Technology; S. W. Reyner, South Dakota
School of Mines; Michael Rolle, Massachusetts Institute of Technology; Michael Schulz, Michigan
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State University; R. P. Stanley, California Institute of Technology; J. J. Weinkam, Xavier
University, Cincinnati; J. R. Whitney, Michigan State University; Robert Wilson, American
University; and Thomas Zaslavsky, City College.

A total of seventeen hundred five contestants from two hundred five colleges
and universities entered the competition. Twelve hundred sixty contestants
from one hundred ninety-nine colleges and universities (one hundred seventy
having teams) participated in the examination on December 7, 1963.

The individual rankings of contestants (except for the relative ranks of the
first five) may be obtained by any department of mathematics for the purpose
of selecting graduate students.

Those participating in the competition were given the following problems to
solve:

Part I
1. (a) Show that a regular hexagon, six squares, and six equilateral triangles can be assembled
without overlapping to form a regular dodecagon.
(b) Let Py, Py, - - -, P12 be the successive vertices of a regular dodecagon. Explain how the
three diagonals P1Py, P3Py, and P.Py intersect.

2. Let { f(n)} be a strictly increasing sequence of positive integers such that f(2)=2 and
Sf(mn)=f(m)f(n) for every relatively prime pair of positive integers m and # (the greatest
common divisor of 7 and # is equal to 1). Prove that f(z) = for every positive integer #.

3. Find an integral formula for the solution of the differential equation

86— DG —=2) -+ (6 —n+ 1y = 1), sz 1,
for y as a function of x satisfying the initial conditions y(1)=7y/(1)= - . . =y-1(1)=0,
where f is continuous and

=z d
T Vdx

4. Let {a.} be a sequence of positive real numbers. Show that

1
lim sup » (——-%ﬂ - 1) =1

>0

Show that the number 1 on the right-hand side of this inequality cannot be replaced by
any larger number. (The symbol lim sup is sometimes written Iim.)
5. (a) Prove that if a function f is continuous on the closed interval [0, =] and if

f'f(a) cosada=f'f(o) sin0do = 0
0 0

then there exist points « and 8 such that
0<a<B<m and f(e) =f(B) =0.

(b) Let R be any bounded convex open region in the Euclidean plane (that is, R is a con-
nected open set contained in some circular disk, and the line segment joining any two
points of R lies entirely in R). Prove with the help of part (a) that the centroid (center
of gravity) of R bisects at least three distinct chords of the boundary of R.

6. Let U and V be any two distinct points on an ellipse, let M be the midpoint of the chord
UV, and let AB and CD be any two other chords through M. If the line UV meets the
line 4 C in the point P and the line BD in the point Q, prove that M is the midpoint of the
segment PQ.
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Part I1

. For what integer @ does x2—x-a divide x13+x+90?

2. Let S be the set of all numbers of the form 2%3#, where m and # are integers, and let P be
the set of all positive real numbers. Is .S dense in P?

3. Find every twice-differentiable real-valued function f with domain the set of all real num-

bers and satisfying the functional equation

(f@)? — (fON? = f(x + 3)f(x — 3)

for all real numbers x and y.

4. Let C be a closed plane curve that has a continuously turning tangent and bounds a
convex region. If T is a triangle inscribed in C with maximum perimeter, show that the
normal to C at each vertex of T bisects the angle of T at that vertex. If a triangle T has
the property just described, does it necessarily have maximum perimeter? What is the
situation if Cis a circle? (A convex region is a connected open set such that the line segment
joining any two points of the set lies entirely in the set.)

5. Let {a.} be a sequence of real numbers satisfying the inequalities

02a:=100a, for n =k =2mandn=12,---,

-

and such that the series

converges. Prove that

lim na, = 0.

n—w0

6. Let E be a Euclidean space of at most three dimensions. If 4 is a nonempty subset of E,
define S(A4) to be the set of all points that lie on closed segments joining pairs of points
of A. For a given nonempty set A,, define A,=S5(4,,) for n=1, 2, - - - . Prove that
As=As;= - -+ . (A one-point set should be considered to be a special case of a closed
segment.)

Solutions. Part I

1. (a) Place the squares externally on the sides of the hexagon. Since the
angles between adjacent sides of adjacent squares are all equal to 60°, the gaps
can be filled with the six equilateral triangles. Since 60°4-90°=150° the result-
ing dodecagon is regular.

(b) The three diagonals are concurrent. Let the dodecagon be composed as
described in part (a) in such a fashion that P1 Py, is the side of a square. The lines
PyPyy, P3P, - - -, PPy, divide the angle 150° at Py, into ten equal angles of
15°. Therefore the angle P,P;P,s is equal to 45°, P,Pi, is a diagonal of the
square on PPy, and PP is the other diagonal. The three lines P1Py, P3Py,
PP all pass through the center of this square.

2. Assume that f(3) =34p, where p=0. Then f(6)=642p, f(5)=5+2p,
f(10) =10+4p, f(9)<9+4p, and f(18) <18+48p. Also, f(5) =5+p, f(15) =15
+8p+p2, and f(18)=18-+8p+p2 Consequently, 18+8p4p?=<18-+8p, and
hence p=0 and f(3) =3. Since f(6) =6, f(n) =n for n<6. In general, if f(n)=n
for n<2k, where k is an integer >1, f(2k—1)=2k—1, and hence f(4k—2)
=4k—2, and f(n)=n for n<4k—2. Since 4k—2>2k, induction shows that
f(n) =n for all positive integers .
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3. The first step is to show that
@6—1D@E—-2)---(@—n+1) =a"Dn,
Proof by induction reduces to showing that
D5 — n) = xDrH,
which can itself be proved by induction. Alternatively, the initial identity can
be proved by showing that it is valid when applied to every nonnegative integral

power x*, and hence valid for every polynomial, and this verification for x* re-
duces to showing that

G —1) - - @G—n+DF=kE—1) - (k—n+ 1)t

The given differential equation becomes x"D"y(x)=f(x), and the solution is
provided by Liouville's formula for iterated integrals:

f "1 1D g
1

tn

y(x) = —

4. Assume the conclusion is false. Then there is a positive integer N such

that for = N,
1 ay
n(—-+——“ - 1) <1.
an

This inequality is equivalent to

1 ,<ﬁ_ Qi1

n+1 =n n+1
Replacing » by N, N+1, - - -, N+k—1, in turn, and adding the results, we
obtain

1 1 1 an AN 4k ay
e —— < —— <=
N+1+N+2+ +N+k N N+k N

in contradiction to the divergence of the harmonic series.
To show that 1 cannot be replaced by a larger number, let a,=kn,
n=1,2,+--.Then

(1+dn+1 ) 1+% 14k
a(——= 1) = LI
an

k k

which is arbitrarily near 1 for large k. Alternatively, if a,=n log, n

1 n
lim n(———_i:—g—ii - 1) =1,

n— o an
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5. (a) Since sin >0 for 0 <0<, the second of the two assumed equations
implies that f(o) =0 for at least one o between 0 and 7. Assume now that this «
is the only zero of f between 0 and . Then f() must change sign at « and no-
where else between 0 and =. Hence f(6) sin (§ —«) is of constant sign and

f rf(e) sin (0 — a)df # 0.

But this is inconsistent with the assumed vanishing of two integrals.

(b) Choose the center of gravity of the bounded convex domain D as the
origin of a system of polar coordinates 7, 8. Let r=7(f) be the equation of the
boundary curve. Obviously, there is at least one direction § with 7(f) =r(0+).
Choose it as the positive x-axis. Put f(f) =73(0) —3(0+). Since O is the center
of gravity, both of the integrals given in part (a) vanish. Hence f(f) has at least
two zeros, i.e. 7(6) =r(@+) for at least two distinct values of 6 with 0 <6 <.

6. First solution. By Steiner’s theorem,

4 D
MPUV ] BCUV R QMUV | MQVU.

Hence PQ is a pair of the involution (MM)(UV). Since M is the midpoint of
UV, the other invariant point of this involution is the point at infinity, and the
involution relates pairs of points equidistant from M.

Second solution. Choose an oblique coordinate system so that the y-axis con-
tains the points U and V, and the x-axis contains the midpoints of chords
parallel to U and V. Let the equation of the ellipse be y?=ax?+bx+c, and those
of the lines containing the chords 4 B and CD be y =mx and y = nx, respectively.
Then denote:

A: (x1, y1), where x; is either root of m*?=ax+bx+c,

C: (%3, v5), where x; is either root of n*?*=ax?+bx+c.

The y-intercept of AC is
y2— ¥ (m — n)x1%2

mxy — X1
X9 — X1 X2 — X1

With a similar notation, the y-intercept of BD is (m — n) %%/ (%2 — ). The prob-
lem is to show that the sum of these y-intercepts is zero, and this quickly reduces

to showing:
o1+ %1 %2+ &

xX1%1 Koo

Finally, this follows immediately from the formulas for the sum and product
of the roots of a quadratic equation.

Third solution. Replace the ellipse by a circle. Drop perpendiculars @ and &
from P and Q to 4B, and perpendiculars ¢ and d from P and Q to CD. Write
I=UM=MYV, p=PM, and ¢= MQ. We wish to prove p=gq.
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We have the following pairs of similar right triangles:
AMa~ AMb, AMc~ AMd, NACc~ ABb, Ada~ ADd.
These yield respectively

whence

¢ ¢4q bd bd BQ QD
_CPXPA UPXPV (—p)(+p) P—p
BOQXQD UQXQV (+9U-—-9q 1r-¢

Thus p=gq, as desired.
Finally, since this is an affine theorem that has been proved for a circle, it
holds also for any ellipse.

Solutions Part II

1. a=2. The cases x=0 and x=1 show that ¢ divides 2. The case x=—1
shows that @ cannot be 1 or —2. The case x= —2 shows that ¢ cannot be —1.
Finally, a =2 can be checked by actual division.

2. Yes. This density is equivalent to the density of the numbers
m log 2+n log 3, which in turn is equivalent to the density of the numbers
m~+n(log 3)/(log 2). Now, log 3/log 2 is irrational (the proof is easy), and hence
the set of all # log 3/log 2 modulo 1 is dense in the unit interval.

3. Putting y=x shows that f(0) =0. Differentiating successively, first with
respect to x and then with respect to y, we obtain

H@)f (@) = f'(@ + 0)fx — 3) + fl& + 9)f (& — ),
0 =f"(x+ yfx —3) — fx + 9)f"(x — ),

and hence, for all # and v:
I )f(v) = fw)f" (v).

There are two main cases: (i) f”(#) =0 identically and (ii) there exists a non-
empty open interval I in which f”(u) 0. Case (i) gives f linear and, since f(0)
=0, f(x) = cx for some constant c. For case (ii), let v be a point where f(vo)f" (vo)
#0, and let ¢=f""(v)/f(vo). We now have a nonzero constant ¢ such that 1/ (x)
=¢f(u) for all real u. There are two subcases: (iia): ¢ <0, (iib): ¢>0. For case
(iia), let c= —a?, so that f"'(u) +a*(u) =0, and f(u) = 4 sin au-+B cos au. Since
f(0)=0, B=0 and f(u) = A4 sin au. For case (iib), let ¢ =52, so that f"’(u) —b2f(x)
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=0, and f(u) = Csinh bu-+D cosh bu. As before, D=0 and f(#) = C sinh bu. In all
cases these solutions check.

4. If the tangent line is permitted to approximate the curve in a neighbor-
hood of a vertex where the normal to the curve does not bisect the angle, the
principle of reflection shows easily that the perimeter of the triangle can be in-
creased by a small displacement of the vertex. If an equilateral triangle is
“blown up” slightly to give a smooth curve, an inscribed equilateral triangle
whose vertices are near the midpoints of the sides of the original triangle has
the property described but is certainly not of maximal perimeter. For a circle
this property implies that the inscribed triangle is equilateral, and hence of
maximal perimeter.

5. By assumption, for any positive integer #, as, is less than or equal to
each of the # numbers 100 a,, 100 @441, * * -, 100 @,—1, and consequently, as the
result of addition and doubling,

2naz, = 200(as + Guy1 + ¢ -+ + @2a—1) = 0.

Similarly, @2, is less than or equal to each of the » numbers 100 a,, 100 @41,
-+ ., 100 a@3,_1, and consequently,

(2n — 1)agm—1 = 210201 £ 200(@s + @ny1+ -« - - + ag01) — 0.

6. If A, is a subset of a line, then 4, is the smallest interval I containing
A, and therefore so are Ag, A3, - - - . If A is a subset of a plane, but not a line,
and if #, v, and w are any three points of this plane, define T'(«, v, w) to be the
smallest convex set containing #, v, and w. If p lies on a segment joining points
of the segments [a, b] and [c, d], and if ¢ lies on a segment joining points of the
segments [e, f] and [g, %], and if 7 is a point of the segment [p, ¢], then 7 belongs
to the smallest convex set containing the points a, b, - - -, g, &, and therefore
belongs to T'(x, v, 2) for a certain triplet x, y, and z of these points. But
TCS(S({x, 5, 2})) and hence r&ET CS(S(40)) = As. Therefore 4, is convex, and
hence equal to 43, Ay, -« + . If A¢is a noncoplanar set, define T'(¢, #, v, w) to be
the smallest convex set containing ¢, #, v, and w. The procedure is the same as in
the plane case, except that r&E7(s, %, ¥, 2) for some four points s, %, ¥, and 2.
The inclusion TCS(S({S, x, ¥, z})) follows from the fact that if L; and L, are
two nonadjacent edges of a solid tetrahedron then every point of this solid
tetrahedron lies on a segment joining a point of L; and a point of L,.

Mathematical Swifties

“I'm dividing one integer by another,” Tom said rationally.

“Why isn’t = equal to 22/7?” Tom asked irrationally.

“The ratio of the circumference of a circle to its diameter is not 22/7,” said Tom piously.
“The first derivative shows that the function is increasing,” Tom stated positively.
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SOME CONTOUR INTEGRAL SOLUTIONS TO BESSEL’S EQUATION

James M. HORNER, University of Alabama

It is well known that
(1) y(z) = znfein(l —_ tz)"_lmdi
c

is a solution to Bessel’s equation provided that e®*(1 —#2)"+Y/2 vanishes at the
termini of the contour C. This result can be generalized.

THEOREM. Let P(t) =at?+bt-+c, where b2—4ac#0, and let
2) f(z, t) = A exp [iusP'(f)] + B exp [—iuzP'(2)],

where A and B are constants and u= + (b2—4ac)~'2 Then
® 9@ = o [ fio, hPrsi
c

is a solution of Bessel's equation for appropriate contours C, assuming differentia-
tion of (3) under the sign of integration.

Proof. 1t is sufficient to show that

@ (@) = [ 16 piras
¢
satisfies
(5) Llw] = 22" + (2n + 1)w' + 2w = 0.
For simplicity, let
(6) g(z, ) = A exp [iuzP'(t)] — B exp [—iuzP'(t)].

If (4) is substituted into (5) the result is

L[w] = 2 f f(z, ) Pr12{1 + w2[2P"P — (P')?]}dt
Q) ¢
+u f Pr=112{(2n + 1) P'g(3, t) — 23uP" Pf(z, t)} dt.
c

642
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But 2P""P— (P’)?= — (b2 —4ac) = —u~?, so the first integral in (7) vanishes
and (7) becomes

a
(8) L[w] = Ziufc = {g(z, ) Pr+112} dt.

The conclusion then follows for all contours C for which [g(z, £) Pr+1/2]¢=0.
In particular if 7; and 7; are zeros of P(f) then

) 3@ = o [ 1, pprna

is a solution to the Bessel equation when Re(n+1/2)>0. If A+B=0, v,(2) is
the trivial solution. When A+4+B#0, y.(3)/z" is an integral function for
Re(n+1/2)>0, so

(10) Yu(®) = Ko u(2).
If both members of (10) are divided by 2 and then evaluated at =0, we
find that
(11) Ko, =2"(4 + B)T'(n + 1/2)f Pr=1/24y.
1

If P(¢) is written P(¢)=a(t—r1)(t—7rs) the integral in (11) becomes a Beta
function integral, with the change of variable t=7,-+s(r.—r;), and

(12) K, = (—a)"12%(r; — r))2(4 + B)27"/7T'(n + 1/2).
So we have the following
COROLLARY. If P(t) =a(t—r)(t—r2), r15%rs, a0, then for Re(n+1/2)>0
(4 + B)"'(22)"
(rs — r)*/7T'(n + I/Z)fr
where f(z, t) is given by (2), with u= *a(rs—r)~! and A+ B#0.

(13)  J.(2) = 2 o, D[t = r2)(ra — )] =112,

Reference

1. G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge University
Press, 1944.

SOME REMARKS ON ORBITS IN INVERTIBLE SPACES
ANDREW J. UMEN, State University of New York at Buffalo

In a recent note [4] Norman Levine indicated some additional local prop-
erties which are necessarily global in invertible spaces. It is the purpose of this
note to exhibit some of the properties of orbits in invertible spaces and to relate
the study of invertible spaces to an early paper [1] by Richard Arens.
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DEFINITION. If S is an invertible topological space and H the group of all
homeomorphisms of S onto S then the symbol H(x) will be used to denote the set of
all images of the point x under transformations from H. H(x) is called an orbit in S.

Hocking and Doyle have pointed out that in an invertible 7 space each orbit
is a nonempty, homogeneous, invertible subspace of .S, which is dense in S, and
that if H(x) and H(y) are distinct orbits in .S then H(x)(H(y) = &. Hence, an
invertible Ty space S may be expressed as the union of its orbits:

S= U H(x)
a€A
where

H(x) N H(xg) = &, % ifasp and H(x) =S
for each a€A.

THEOREM 1. If S is an invertible T space which is not homogeneous then orbits
in S are neither open nor closed.

Proof. Since S is not homogeneous .S has more than one orbit. Suppose some
orbit H(x,) is closed. Then H(x,) = H(x,) =S, contradicting the fact that S has
more than one orbit.

On the other hand if some H(x.) is open, choose y €& H (x.). Then H(y)NH (%)
= so that H(y) CS—H(x.), a closed set. Hence S =H(y) CS—H(x.) which
is again a contradiction. It follows immediately from this theorem that,

COROLLARY 1. In an invertible Ty space, which is not homogeneous, orbits are
not finite.

COROLLARY 2. Invertible Ty spaces, which are not homogeneous, are not finite.

COROLLARY 3. In an invertible Ty space, which is not homogeneous, orbits are
not compact.

THEOREM 2. In an invertible Ty space, which is not homogeneous, every orbit is
dense in itself.

Proof. Suppose that H(x) is an orbit and p is a point in H(x). By Corollary
2, p is not the only point in H(x). Suppose that there exists some neighborhood
U of p containing no other points of H(x). Since S is invertible there is a homeo-
morphism k: S—S such that #(S— U)CU. This contradicts the assumption
that U contains no other points of H(x) beside p.

THEOREM 3. If S is an invertible Ty space with a finite number of orbits then
any union of orbits is an invertible subspace of S.

Proof. Suppose that S has #=2 orbits. Any nonempty collection of orbits
can be represented as S=S—UL H(x;) where k<n. Suppose that U is open in
S. U is of the form UNS&. Define a mapping #: S—S as the restriction of the



1964] MATHEMATICAL NOTES 645

inverting homeomorphism %: S—S for U. It is not difficult to show that % is a
homeomorphism from § onto S and that #(S— 0) CU. Hence S=S—Ut_; H(x,)
is invertible.

THEOREM 4. If S and T are invertible spaces which are homeomorphic then
orbits in T are the homeomorphic images of orbits in S.

Proof. Let f be a homeomorphism of .S onto 7" and let H(x) be an orbit in
S. Let H' be the group of all homeomorphisms of T onto T. The problem is to
show that f(H(x)) =H'(f(x)).

Let f(v) €f(H(x)). Since y& H(x) there is & H such that k(x) =y. Consider
ThreH'. fhf~'(f(x)) =f(y) so that f(y) €H'(f(x)). Hence f(H(x)) CH'(f(x)).

Now let y&H'(f(x)). Then there is ' € H’ such that #’(f(x)) =v. Consider
fWWfeH. We have f~'h'f(x)=f""WHh-(y)=f"1(y). Thus f~(y)EH(x) and
yEf(H(x)). Hence H'(f(x)) Cf(H(x)).

THEOREM 5. 4 subspace S’ of an invertible space S is an orbit in S if and only
if S" is nonempty, homogeneous, and invariant under transformations from H.

Proof. Suppose S’ is an orbit in S. It follows from previous remarks that .S’
is nonempty, homogeneous and invariant under H. If on the other hand §' is
nonempty, homogeneous and invariant under transformations from H let x&.S’.
Then S'=H(x). For if y&.5’ there is A€ H such that k(x) =y. Hence y& H(x)
and S’ CH(x). If y& H(x) then there is A€ H such that k(x) =y. But x&S’ and
since S’ is invariant i(x) €S’. Thus H(x) CS'.

It is not difficult to show that if .S and T are invertible spaces then their
topological product SX T is an invertible space. The question naturally arises
as to whether the product of orbits will be an orbit in the product space. It is
easy to establish that if H(x) is an orbit in .S and H’(y) an orbit in T then
H(x) X H'(y) will be a homogeneous subspace of SXT. The following example
shows, however, that in general H(x) X H'(y) may not be invariant in SXT
and hence not an orbit.

Consider the space S consisting of the open interval (0, 1) together with the
point 2, where sets will be called open if their complements are countable sub-
sets of (0, 1). This is an invertible space with orbits (0, 1) and {2} Now con-
sider the space SXS. The orbits in SX S are (0, 1) X (0, 1), {(2, 2)} and (0, 1)
X {2}U{2}%(0, 1). The sets {2} X (0, 1) and (0, 1) X {2} are not orbits in
themselves, for it is possible to define a homeomorphism of SXS onto itself
by interchanging the sets (0, 1) X {2} and {2} X (0, 1).

We now consider the problem of topologizing the group H of homeomor-
phisms of an invertible T space onto itself. Since in an invertible T3 space we
can associate with each nonempty open set U and each proper closed subset C a
homeomorphism %: S—S such that 4#(C) CU, it seems appropriate that we
should consider subsets of H of the form W(C, U), where k& W(C, U) provided
r(C)CU.
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THEOREM 6. The collection of all sets of the form Ni-, W(C;,U;), where each C;
is a proper closed subset and each U; is a nonempty open subset of an invertible Ty
space S, forms a basis for a topology for H.

Proof. We note first that no set of the form W(C, U) is empty. Further-
more if €H and k is not the identity homeomorphism then %2 moves some
point p and hence hEW(p, S—p). Now let p be any point in .S and U a neigh-
borhood of p; then the set W(p, U) contains the identity homeomorphism. Thus
H=U,er W(Cq, U,) and the result follows as in [3, p. 47-48].

TuEOREM 7. If S is a normal invertible Ty space then, with the topology of the
preceding theorem, H is a topological group.

Proof. We must show (1) that the mapping F: HX H—H defined as F(f, g)
=fg, the composition of f and g, is continuous and (2) that the mapping I: H—H
defined as I(h)=h"! is continuous. The details are much the same as in [1].
To establish (1) let fg&W(C, U). Then f(g(C)) CU and hence g(C) Cf~(U).
Since .S is normal there is an open set V in .S such that g(C) CVC TV Cf~Y(U).
Hence W(C, V) and W(V, U) are neighborhoods in H containing g and f respec-
tively. Thus we have (f, g) EW(V, U)X W(C, V) a neighborhood in H X H. If
(f", ghew(V, UyXW(C, V) then F(f, g")=f'¢’ €W(C, U). Hence F is continu-
ous.

To see that (2) holds we observe that if k€ W(C, U) then B 1€ W(U’, ('),
which is an open set. It follows that I is continuous.

TueoREM 8. If S is a normal tnvertible Ty space and H(x) is an orbit in S, then
H(x) is the 1-1 continuous image of the quotient space H/H, where H, is the sub-
group of H which leaves x fixed.

Proof. Define a mapping F: H/H,—H(x) as F(H,h) =h(x). F is clearly a 1-1
onto mapping. To show that F is continuous let H % be an element in the coset
space H/H, and let UNH(x) be a neighborhood of %(x) in H(x). Now W(x, U)
is a neighborhood of A€ H and hence H,W(x, U) is a neighborhood of H,k in
the space H/H,. 1t follows that F(H,W(x, U)) CUNH(x) and thus F is continu-
ous.

The author is indebted to the referee for his helpful suggestions, and wishes also to acknowl-
edge the helpful supervision of Professor E. R. Schneckenburger.
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N-TH POWERS IN THE FIBONACCI SERIES

Froyp BUCHANAN, Buffalo, New York

The two theorems below are concerned with the Fibonacci series or Pisano
series, as it is sometimes called. It is the series defined by U,= U,_1+ Uy,
U, being the nth term and U,= U,;=1. The limiting ratio of the terms is equal
to the positive root of the quadratic equation ¥?—x—1=0 and has an intimate
connection with the Golden Ratio of ancient Greek architecture and design.
The arrangement of leaf stems on the stalks of plants is another illustration of
this series. There are many interesting relations and many striking resemblances
to the natural number series.

THEOREM 1. If p is a prime, Uy is a prime or product of primes unless p=3,
in which case Ug = 5™x, where x is a prime or product of primes.

Proof. Let us suppose U (p#5) is divisible by the square of some odd prime
g. Then U,»=rq?, where 7 is any integer. The only terms in the series which are
divisible by any divisor d are those of the form Usjwa, where s is any integer and
j(d) is the rank of the first term divisible by d. The notation j(d) is my own,
which I adopt for convenience.

By Lucas’ theorem on divisibility of terms of this series by odd primes (see
[1], p. 396-V), the rank of the first term divisible by ¢*, but by no higher power
than % of the prime g, is equal to ¢*~'j(¢) =j(¢*). Hence with 2=2 we would have

»=s5j(q?) =sqj(g). It follows that j(g) would be a power of p and that ¢ itself
must equal p or simply that j(p) is a power of p.

But if p is a quadratic residue of 5, then U,_1=0(p) or p—1=0 (j(p)) and
if p is a quadratic nonresidue of 5, then U,.1=0(p) or p+1=0(4(p)), (see [1],
p. 396-VIII with 6 =+/5). Also p is a residue of 5 if 5 is a residue of p and vice-
versa for nonresidue character. In either case j(p) is prime to p, so j(p) cannot
be a power of p and U, is not divisible by the square of any odd prime.

If g=2, then U,»=4r. As j(4) =6, p»=0 (6), which is not possible. Then, for
all primes other than 5, the theorem is true.

When p=35, since j(5) =5= Us, we have 5*=>5%"1(5), formally. Evidently
5»=3(5") and Us»=5"x where x is prime to 5. If x=kg? with ¢ any odd prime
and % any integer, then 57=0(j(q?)) or 5*=0(gj(¢)) with the result ¢=35, but
then x=0 (5), which is a contradiction.

Our last step is to set =2 in the preceding paragraph. Then x =4k and, as
j(4) =6, we get 5°=0 (6), which is obviously incorrect. Hence, as all possible
cases have been rejected, the theorem follows.

THEOREM 2. Uy, Us and the trivial Uy= U,=1 are the only terms in the series
which are powers of integers other than the first degree.

Proof. Suppose that U,=a™(m>1), where a is any integer and # is odd with
at least two prime factors. With p as any one of the prime factors of #, we can
write U,=(U,/U,)U,, and U,/ U, is an integer since U,=0 (U,) if n=0 (),
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(see [1] p. 396-1). Now, if (U./U,, U,) =1, then U,=b™ or equals 1 if a is a
prime. U, =0 is not true, by Theorem 1, and U,=1 does not satisfy our condi-
tions. Hence (U,/U,, U,) =g, g>1. Then U,=gu and U,/U,=gv, where (u, v)
=1. By Theorem 1, (g, #) =1, for otherwise U, has square factors.

Therefore, as (g2, u)=1 and (u, v)=1, we have (g%, u)=1. Now
U,=(U./U,)U,=g*uv=am. Let us put u=h", g =14", where (k, 7)=1. But if
w="h~, then gu= U,=gh™ and U, would have at least a square factor. So # must
equal 1, giving U,=gand u=1.

So, finally, U,=a™=g% or U,= Uzv with p any odd prime divisor of . If
p=3, n=0(j(4)) or n=0 (6) which makes n even, so we will temporarily exclude
p=3 also. The equation U,= Uy is a necessary condition but, in this form, it
sheds no light on the structure of #. We must transform this equation to a
manageable form.

Let Upy=qiqs * - * ¢r, i.e., a product of its prime divisors. Then U,=0(g),
(i=1,2, - - -, t). For the moment I will exclude p=5. Then #=0(g:j(¢:)). But
for all ¢/'s, j(g:) =p since p=sj(g:) is not possible unless s=1. We will have
n=0(pg;) and none of the ¢.'s equals p since p =j(p) is not possible with p other
than 5. Hence n=0(pqigs - * - ¢-). But qige - + - ¢-="U,, so n=0(pU,). This
equation is necessary and sufficient, for

n=0 (pg:) or n= 0 (g:5(gs) = j(qf))

SO UnEO(QIQZ R qf)z or UMEO(UZ).

With the previous exceptions on p we can arrange all the p’s that divide »
and all of the U,’s in order of magnitude in two lines, one over the other and
get a correspondence, term for term, thus:

b1, P P8
U:Dn Upzy U:va *

Since the U,'s are equal in number to the p’s, and are primes or products of
primes found only among the p’s, and are prime to each other because (U, U,)
=U,,, (see [1], p. 396-111), we must have U,=».

Now U,#p other than p=35, which can be very easily seen, and we have
excluded p=>5 so the relation derived from the correspondence cannot hold and
our required #'s are then only those divisible by 2, 3 or 5 in some combination
of powers of these primes. Our last step will be to find the possible ones, con-
sistent with Theorem 1.

We first note, that if U, is to be divisible by the square of any prime then
that prime must occur in # at least in the first power.

If =0 (25) then U, is divisible by Us. Now Uss is divisible by the prime
3001 and, as 3001 does not occur in #, the prime 5 does not occur in more than
the first power. In this case, as Us, = 5%, where y=0 (2 and 3) and « is prime to §,
the prime 5 obviously would only appear in the first power in Us. So 5 does not
occur at all in #.
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If » is divisible by 9, then as Uy = 34, then # would have to be divisible by 17.
So 3 does not occur in more than the first power in 7.
If =0 (8), then as Uy=21, U,=0 (7) so 2 does not occur in # to more than

the second power.
Hence, if U, is to be a power of an integer, we see that # must be a divisor

of 12. As Us=8, Upp=144 and U,= U,=1, the theorem follows.

Reference

1. L. E. Dickson, History of the Theory of Numbers, Vol. I, Divisibility and Primality,
Chelsea, New York.

CONTINUOUS DEPENDENCE OF SOLUTIONS OF ORDINARY
DIFFERENTIAL EQUATIONS

AARrON StrAUSS, University of Wisconsin
Consider the system of differential equations
(E) « = f(t, %),

where x and f are real column #n-vectors and ¢ is a real scalar. We follow the
notation of [1]. Thus | x| = >_r, |x:|, where x= (%1, - - -, %), while fE(C, Lip)
in D means that f is continuous in the pair (¢, x¥) in D and that there exists a
constant £>0 such that for every (¢, x1) and (¢, ;) in D,

) | 7@, %1) — f(2, %) | S k| 21 — 2.

It is known (see [1], Chapter 1) that if f&(C, Lip), then any solution of (E)
is a continuous function of its initial conditions. The standard proof uses suc-
cessive approximations. Our purpose is to give a new proof, which is more direct
and seems more natural. We note that similar methods have been used before

to prove weaker theorems (cf. [2]).

TrEOREM 1. Let f&(C, Lip) in a domain D of the (n-+1)-dimensional (¢, x)
space, and suppose that ¥ is a solution of (E) on some interval a <t=<b. Define
Us={(t, x) ED: a <t <b, |x—¢/(t)| <6}. Then for any €>0, there exists a 6>0
such that for any (7, £) € Us, there is a (unique) solution ¢ of (E), such that

(i) o(r)=¢§,

(ii) ¢ s defined on all of a St=D,

(i) |[¥(@)—¢()| <eon a<t=b.

Proof. Let 6,>0 be such that U; CD, let 0<e=d;, and choose § <ee=*®—a),

Let (r, £) be any point in U; and let ¢ be that (local) solution of (E) for which
¢(1) =& Let ¥(r) =E. Then for 1=<t=b,

() = E+ f ‘ f(s, ¥(s))ds.
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Also for as long as (¢, ¢(t)) remains in D,

(1) = £+f f(s, ¢(s))ds.
Therefore

lv - 00| = [E—¢l +f'lf(s,¢<s>> = f(s, (s)) | ds

= 6+f‘k]t//(s) — ¢(s)| ds.

Using Gronwall’s inequality (see [1], Chapter 1, problem 1)
[v() = ¢0)| =860 <.

Thus (¢, ¢(f)) cannot leave D, and ¢ can be continued to 7<¢t=<b, where |gb(t)
-—qS(t)] <e. A similar argument gives the same result for ¢ <¢{=r, proving
Theorem 1. :

The following corollary of Theorem 1 gives the desired continuity result.

CoRrROLLARY. Let f and D be as in Theorem 1. Let (19, £0)ED and let
Y=y (2, 7o, £0) be that solution of (E) on some interval a £t for which Y (o, 7o, £o)
=£o. Then for any to& [a, b], ¥ is continuous at (t, To, £o)-

Proof. Fix any € [a, b]. Let 6y, ¢, and 8 be as in the proof of Theorem 1.
Then there exists a 6;>0 such that N(t’ , To, £0) =¥ (", 7o, Eo)| <68/4 whenever
It’——t”l < 8y, uniformly for ¢/, "€ [a, b]. Choose 7=min(8;, §/4). Let (t1, 71, £1)
be any point such that #E [a, b], (11, &) ED, and

[to— ti] + | 70— 71| + ‘50"‘51' <n.

Let ¢ =¢(t, 1, £&1) be that solution of (E) for which ¢(r1, 71, &) =£:. We shall show
!¢(t01 To, EO)_¢(tly T1y sl)l <€- NOW

l & — &1’(1'1,1'0,20)] < |a- Eol -+ I & — Y(r1, 70, 'éo)l
< |8 —to| + | Wlro, 70, £0) — Y71, 70, £0) |
< 3/4+8/4 =6/2.
Thus (71, &) € Uspe so that by Theorem 1, we actually have
| ¥, 7o, £0) — &(t, 1, £1) l < ¢/2 fora=t=b.
Finally
| ¥(to, 7o, £0) — b(ta, 71, £1) |
< | (o, 7o, ) — Wb, o, £0) | + | ¥, 7o, £0) — b(t1, 71, 1) |
Se¢/2+5/4<e

completing the proof.
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If f contains a k-dimensional parameter u, define
(Eﬂ) o = f<t7 X, )5
I,.={u: l#—uol <c} for some uo, ¢ > 0,
D, = {(t, %, 1): (t, ®) € D, u € L}.

THEOREM 2. Let fE(C, Lip) uniformly in p in D,, and suppose that Y is a
solution of (E,,) on a =t=b. Define

Ve={(t, #u) EDua<t<b |z —v®| + |p—m| <o}

Then for any €>0, there exists a >0 such that for any point (v, &, u) E Vs, there is
a (unique) solution ¢ of (E,) satisfying (i), (i), and (iii) of Theorem 1.

Proof. The procedure is the same as in Theorem 1. Given & and ¢, pick
8,>0 such that |f(, ¥ (), ) —fC, ¥, ﬂ0)| <e[2(b—a)et® [~ uniformly for
tE [a, b] whenever |pu—po| <8. We then choose

§ < min (62, —;— e"‘“"“)),
let (7, £, u) € Vs, and let ¢ satisfy (E,) through (v, £). Then for (¢, ¢()) in D,

£ el + [ 1705906, w0 — 1 809, )1 05

IIA

|v®) — 49|
s [E—el + [ 1705906 w0 — 16 009, )] 05
[ 1600, ) = 165, 660, | 25

€ t
< — g~k (b—a) —
So+ o +£k|¢<s> 8(5) | ds.

By Gronwall’s inequality,
I ¥(t) — o) l = [5 + —;- e—k(b—a):l k(=)

<e

As before, ¢ can be continued to a S¢<b, where the above inequality remains
valid, proving Theorem 2.

It is again an easy consequence that a solution ¢ of (E,,) through (7o, ) is
continuous in the (n+k-+2)-tuple (¢, 7o, o, to)-

Although this method gives the result for the case where, in (1), k is gen-
eralized to a continuous (or L,) function k(f), it is highly unlikely that it can be
used to prove the more general “continuous dependence” theorems, as given in
Chapter 2 of [1].
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ANOTHER PROOF OF WEDDERBURN’S THEOREM

T. J. Kaczynski, Evergreen Park, Illinois

In 1905 Wedderburn proved that every finite skew field is commutative. At
least seven proofs of this theorem (not counting the present one) are known.
See [1], [2], [5] (Part Two, p. 206 and Exercise 4 on p. 219), [6] (two proofs),
and [7]. Unlike these proofs, the proof to be given here is group-theoretic, in
the sense that the only non-group-theoretic concepts employed are of an ele-
mentary nature.

LEMMA. Let q be a prime. Then the congruence t2+r?= —1 (mod q) has a solu-
tion t, r with t#£0 (mod g).

Proof. If —1 is a quadratic residue, take r=0 and choose ¢ appropriately.
Assume —1 is a nonresidue. Then any nonresidue can be written in the form
—s? (mod ¢) with s3#0. If 2472 is ever a nonresidue for some ¢, 7, set {2472
= —s?, and we have (¢#571)2+4(rs~1)2= —1. (Throughout this note, x~! denotes
that integer for which xx~'=1 (mod ¢).) On the other hand, if #2472 is always a
residue, then the sum of any two residues is a residue, so —1= q 1=1+1+4 -
+1 is a residue, contradicting our assumption.

Proof of the theorem. Let F be our finite skew field, F* its multiplicative
group. Let S be any Sylow subgroup of F*, of order, say, p*. Choose an element
g of order p in the center of S. If some 2&.S generates a subgroup of order p
different from that generated by g, then g and % generate a commutative field
containing more than p roots of the equation x?=1, an impossibility. Thus .S
contains only one subgroup of order p and hence is either a cyclic or a general-
ized quaternion group ([3] p. 189).

If S is a generalized quaternion group, then .S contains a quaternion sub-
group generated by two elements @ and b, both of order 4, where ba =a~1b. Now a?
generates a commutative field in which the only roots of the equation x2=1 or
(x+1)(x—1)=0 are +1, so since (a?)2=1, we have

(1) a*= —1,
Hence a—'=a*= —a, so
(2) ba = — ab.
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Similarly,
) b = — 1.

Taking g=characteristic of F (¢-1=0), choose ¢ and 7 as specified in the
lemma. Using relations (1), (2), (3), we have

t+ra+0)0t+1+ra+ ) =r@+r+ a+ @2+ + 1)b = 0.

One of the factors on the left must be 0, so for some numbers #, v, w, ##0 (mod ¢),
we have w+va+ub=0, or b= —u"va—u"'w. So b commutes with a, a contra-
diction. We conclude that S is not a generalized quaternion group, so S is cyclic.

Thus every Sylow subgroup of F* is cyclic, and F* is solvable ([4], pp. 181~
182). Let Z be the center of F* and assume Z 3 F*. Then F*/Z is solvable, and
its Sylow subgroups are cyclic. Let 4/Z (with ZCA) be a minimal normal sub-
group of F*/Z. A/Z is an elementary abelian group of order p* (p prime), so
since the Sylow subgroups of F*/Z are cyclic, 4/Z is cyclic. Any group which is
cyclic modulo its center is abelian, so 4 is abelian. Let ¥ be any element of
F*, y any element of A. Since 4 is normal, xyx*€ 4, and (14x)y=32(14x%) for
some & 4. An easy manipulation shows that y —z=2x —xy= (z2—xyx~1)x.

If y—z=2—xyx~'=0, then y=2=xyx~!, so x and y commute. Otherwise,
x=(z—xyx~1)"1(y—2). But 4 is abelian, and 2, y, xyx'&4, so ¥ commutes
with y. Thus we have proven that 4 is contained in the center of F*, a contra-
diction.
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A NOTE ON PRODUCT SYSTEMS OF SETS OF NATURAL NUMBERS

T. G. McLAuGHLIN, University of California at Los Angeles

In this note, we apply a slight twist to a trick exploited about twelve years
ago by J. C. E. Dekker ([2]), our purpose being to expose a couple of elementary
facts about nonempty, countable “product systems” of infinite sets of natural
numbers which are, at the same time, “finite symmetric difference systems.”
We proceed in terms of the following definitions.

DEFINITION. By a product system of subsets of N (N the natural numbers), we
mean a collection of subsets of N which contains, along with any two of its members,
their intersection.
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DEFINITION. By a finite symmetric difference system of subsets of N, we mean a
collection C of subsets of N such that if A, ZCN, AEC, and (A—Z)U(E—A)is
finite, then Z&C.

DEFINITION. Let AC N, and let C be a collection of subsets of N. We say that
A adheres to C (abbr.: A ad C) just in case, for all ZEC, A—2Z is a finite set.

Remark. The reader will find in [2] and [3] examples and applications of the
notion of a nonempty, countable product system C of infinite subsets of N, with
adherent subsets of N.

TuEOREM. Let C be a nonempty countable collection of infinite subsets of N which
is both a product system and a finite symmetric difference system. Then there exists
a subset A of N which (modulo finite extensions) is maximal with respect to adher-
ence to C, if and only if C itself contains a set A which adheres to C (i.e., if and only
if Cis “self-adherent”).

Proof. (1) The trivial direction. Let A be an element of C which adheres to
C. Then obviously any subset of N which adheres to C can extend A by only
finitely many numbers.

(2) The less trivial direction. Assume that a certain subset A of N adheres
to C, and that any subset 2 of N which also adheres to C has only finitely many
members not in A. Suppose A& C. Then, since A adheres to C and C is a finite
symmetric difference system, the following must be true: for each 2Z&C, 2 —A
isinfinite. Let C be enumerated (possibly with repetitions) as C= {Ao, Ay, - } ;
then, since C is a product system, each of the sets 4¢ =40—A, 4f =(4:M4,)
—A, A4 =(4ANA1NAy) —A, - - - must be infinite. For each natural number ¢,
let @i, @1, @2, - -+ + be an enumeration of 4/. Define a sequence {d;} as follows:

do = @oo;
dy = ayj,, where 7, is the least number j such that ai; > aoo;

da = asj,, where j, is the least number j such that as; > ayj,;

Then, A*= {d,—li=0, 1,2, } is an infinite subset of N—A which (as is very
easily verified) adheres to C. Thus AUA¥* is an infinite extension of A which
adheres to C; and so we have a contradiction from which the theorem follows.

Remark. 1t will be noticed that we did not use the whole of our assumption
that C is a finite symmetric difference system; the theorem remains true (and
the foregoing proof valid) if we replace the finite symmetric difference hypothe-
sis by one which asserts merely that if &€ C and 2 —A, is finite, where A, is
(modulo finite extensions) maximal adherent to C, then A& C.

We exhibit next a corollary to the above theorem, involving the notion of
recursive function. For a formal treatment of the concept of recursive function,
the reader is referred to [1]. By a recursive permutation is meant a recursive
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function, from N onto N, which is one-to-one. A recursive set of numbers is a sub-
set A of N such that each of A, N—A is empty or is the range of a recursive func-
tion. It is an elementary result that if A, 2 are two infinite, coinfinite recursive
sets, there exists a recursive permutation mapping A onto 2.

COROLLARY. Let C be as in the theorem, with the additional property that C is
closed under recursive permutations. Suppose that there exists an infinite subset A
of N which is not immune (i.e., A has an infinite recursive subset), which adheres to
C, and which is (modulo finite extensions) maximal with respect to adherence to C.
Then C consists entirely of cofinite sets of numbers.

Proof. Suppose that C contains a noncofinite set. Then, since A adheres to C,
A is noncofinite. By the theorem, A itself belongs to C. By hypothesis, A has an
infinite recursive subset Z. By a result cited in the paragraph preceding the state-
ment of the corollary, there is a recursive permutation, g, such that g&) =N -3,
g(N—2)=2. Since C is closed under recursive permutations, g(A)&C. Hence,
A—g(A) is finite. But, obviously, A—g(A) is infinite; and from this contradiction
the corollary follows. |

Remark. Our proof of the corollary has points in common with the last half
of the proof of Theorem 6.5 in [4].

This note was written while the author held a Cooperative Fellowship from the National
Science Foundation.
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CORRECTION

In the note “On Simultaneous Hermitian Congruence Transformations of
Matrices,” by K. N. Majindar, published in this MoNTHLY, 70 (1963) page 844
the matrix 4 should be

1 0 1 0
[ ] instead of I: :|
0 —1 0 1
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STABILITY BY FRESHMAN CALCULUS
R. M. REDHEFFER, University of California, Los Angeles

The object of this note is to show that certain theorems in stability theory
can be given a simple, unified approach. The main tools used are Rolle’s theo-
rem, together with the familiar formula for differentiating an exponential. The
average proof-length is about two lines.

A prime denotes differentiation with respect to ¢, the various functions are
assumed continuous, =0, and

A =f‘a(s)ds, E(@) = e4®), HO) =f0tE(s)e(s)ds.

One-sided inequalities. We begin with the following observation:
REMARK 1. Let W' =0 at points where W>0, and let W(0) <0. Then W=Z0.

Indeed, if W (1) >0 then there is a £y, with 0 <9 <t;, such that W(ts) =0 and
W>0 on (to, t1). But the mean-value theorem gives a contradiction,

W(t) = W(t) — W) = (1 — t)W'(#) < 0.

REMARK 2. Let w'—a(H)w=0 at points where w>0, and let w(0)<0. Then
w=0.
The hypothesis implies that (Ew)’ = E(w’ —aw) <0 at points where Ew>0.

Applying Remark 1 to the function W= Ew we get W <0, which is to say, w Z0.
The choice w=u—v in Remark 2 gives:

REMARK 3. Let Tu=u’'—a(t)u, let 4(0)=v(0), and let Tu=<Tv hold at all
points where u>v. Then u=v.

The equation Tv=¢(#) can be written (Ev)’ = Ee, hence solved by inspection.
The solution with »(0) =4 satisfies Ev=6+-¢. Using this v, and writing w instead
of # in Remark 3, we get:

REMARK 4. If W' —a()w = e(t) and w(0) £ 0 then w =< (0-+&)ed®, the differential
inequality being needed only at points where w exceeds the desired upper bound, v.

Upon applying this result to w=u —v, the reader will get a statement that is
related to Remark 4 just as Remark 3 is related to Remark 2. Another applica-
tion is:

656
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REMARK 5. Let u satisfy the integral inequality
¢
u) £ o+ [ lalyuts) + 9)ds
0

and let a(t) =0. Then u = (8-+€)ed?,

Call the right-hand side w, so that the given inequality says: # <w. Since
a =0 we have @’ =au-+e<aw-+te Hence the estimate of Remark 4 applies to w,
and a fortiori to u.

Two-sided inequalities. The fact that our hypothesis is needed only at
points where w or u —v exceeds the desired upper bound is now exploited more
fully.

REMARK 6. If §-+&=0 then

I w" =< a(t) l w| + () and | w(0)| < 6 imply that I w| £ (6 + et

Indeed, the hypothesis implies that @' <a(f)w-+e() at points where w>0
and, hence, at points where w exceeds the desired upper bound. Therefore the

estimate of Remark 4 holds. Since the hypothesis also applies to —w, that com-
pletes the proof.

REMARK 7. Let Tu=u'—f(t, u) and suppose that f admits the estimate
f@, w) — f@, )

u—v
whenever u=v. Then ] Tu—Tvl <e(t) and ]u(O) —v(O)I §6=>] u—v] < (64 ¢&)ed,

Define w=u—v and note that the condition T —Tv =€ gives

. +f(t, u) — f(t,)
u

= a(®)

w <

(u—v) = e(t) + a@®)w
-

whenever w>0. In particular, this inequality holds at points where w exceeds
the desired upper bound. Hence, Remark 4 applies. Since the hypothesis is sym-
metric in # and v the same estimate holds for w=v—u, and the result follows.

The fact that the inequality for f does not involve ] f@, u)—fG, v)l allows
use of negative a(¢). It also allows a broader class of functions f than would
otherwise be permitted. For example, the statement “g(x, # ) is monotone”

means that
s[g(l; u + S) - g(t) u)] =0,

where #=u(t) but s is an independent variable. Letting s=v—u gives the con-
dition of Remark 7 with ¢ =0, f= —g, and we conclude:

REMARK 8. Let Tu=u'+g(t, u) where, at each fixed t, either g(t, u 1) or
g(¢, v 1) is monotone. Then

| Tu — To| S e(t) and | u(0) —o(0)]| < 6= |u— | §6+f‘e(s)ds.
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The choice v=0 in Remark 8 gives the following result (which also follows
from Remark 1):

REMARK 9. Let Tu=u'+g(t, u) where sg(t, s) =0 for all s. Then
t
| Tu| S e@t) and |u@©)| 6= |u] =5 +f e(s)ds.
) 0

Remarks 7-9 are special cases of:

REMARK 10. Let Tu=u'—f(t, u) +g(t, u) where f is as in Remark 7 and g as in
Remark 8. Then the conclusion of Remark T holds.
Indeed, f—g satisfies the criterion of Remark 7, and Tu=u'—(f—g).

Uniqueness and stability. If # and v are both exact solutions of the problem
Tw=1(t), w(0) =p, then Tu=Tv, u(0) =v(0), and the foregoing hypotheses hold
with e=8=0. The conclusion |%—v| <0 implies uniqueness, % =v.

A solution u is said to be stable if for any >0 there is a 6>0 such that

| Tu — Tv| <6 and |u(0) —o(0)| 6= |u—19| <.

Evidently, stability implies uniqueness. By inspection of the error bound in
Remark 7 we get:
REMARK 11. On a finite interval 0 <t =<tq let u be a solution of

u —ft,u) =7(6), u(0)=p.

Suppose that f satisfies the condition of Remark T for this u and for all differentiable
v. Then the solution u is stable.

For an infinite interval the stability depends on the behavior of the integrals
defining 4 (f) and & The reader can easily formulate various criteria; as an illus-
tration, we have:

REMARK 12. Let T be as in Remark T, with a(t) <0 and [§*|a(s)|ds= w. Then

(¢
| Tu — Tv| < e(t) =limsup | u—o| < limsupi—— .
t— o t— | a(t) I
For proof choose ¢>lim sup e/] a[ , so that egc[ a| = —ca for t = to, say. Then
to t
€ éf A @e(s)ds + cf e AW [ —a(s)]ds, t = t.
0 t,

0
Since —a=(—A4)’ the second integral equals ¢~4(® —¢=4(%), Denoting the first
integral by m =m(f) we get
eAWG 4 &) = eAW(0 4+ m) + ¢,

the upper limit is =c¢, and the result follows.
If » and % are functions of ¢, the statement 2=o0(%) means lim(h/%) =0 as
t— . A special case of Remark 12 yields:
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REMARK 13. Let T be as in Remark T, with a(t) <0 and [ |a(s)|ds= . Then
ITu— Tw[ = o(a) = Iu—v] = o(1).
Systems of equations. Peeping into the sophomore year, we finally establish:

REMARK 14. Let Tu=u'— F(¢, u), where u and F are vector-valued functions.
Suppose that

| FGw) - F )| < o)) u—o].

Then | Tu—Tv| Se(t) and |u(0) —v(0)| <=>|u—v| Se4®(5+2).
For proof define #=u—v, w= l w] , AF=F(t, u) — F(, v). Then

| Tu — To| Se= | & — AF| Se= || S e+ |AF| = | 7| = e+ o).

Furthermore lw(t)—w(t1)| = l @(t) —@(ty) |, hence |w’ | =|#'|; and the conclu-
sion follows from Remark 6.

Historical note. The history of these theorems covers a span of seventy
years and includes the names of many eminent mathematicians. If € and a are
chosen to be constant, Remark 6 yields the theorem of Peano in [6]. The same
choice with §=0 in Remark 5 sharpens the lemma of Gronwall in [5] since, by
the mean-value theorem, e*—e®<xe® for x>0. The choice ¢e=0 in Remark 5
sharpens the “fundamental theorem of stability theory” of Bellman (see [1]
and [2]), in that we do not require § >0 or # = 0. The choice e=§=0in Remark 5
gives a theorem of Weyl (see [8], where he proved it by writing the integral as
a Stieltjes integral and using mathematical induction). If € and a are constant,
Remark 5 gives a result of Faedo in [3], whereas the choice e=§=0in Remark 7
yields the essence of Giuliano’s theorem in [4]. A special case of Remark 3 is
stated in [1], but the proof is incomplete. The line of thought leading to Remark
14 is suggested by the work of Walter [7]. I have not happened to come across
Remarks 12 and 13, because most authors base their analysis on Remark 5,
which requires a(¢) =0.
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TANGENTS AND DIFFERENTIALS

HucH A. THURSTON, University of British Columbia

1. A recent paper [1] makes the point that the usual elementary definition
of differential is inadequate. The paper [2] gives a valid elementary definition of
tangent-line. The two concepts are related: given a valid definition of tangent
to a plane curve, dx:dy can be defined as the direction-ratio of the tangent.
This is a particularly good definition of differential for an elementary course;
it is both easy to grasp and potentially rigorous (because the treatment of tan-
gents can be made as rigorous as desired).

The definitions are given in Section 2, and the familiar formulae for dx:dy
in the explicit, parametric, and implicit cases follow as in Section 3. It turns out
(Section 4) that the formula in the implicit case holds more generally than might
be expected: it can be proved without using the implicit-function theorem (which
requires continuous derivatives).

In a sense, the three problems of defining tangent, defining differential, and
differentiating a function-of-a-function are equivalent. We have indicated that
the first two are mutually equivalent; and it is well known that, once differen-
tials are defined, differentiation of a function-of-a-function is trivial. Conversely,
if the theorem about differentiating a function-of-a-function is known, it could
be made the basis of a definition of differential (not quite as general as ours—in
fact, bearing the same relation to ours as parametric tangent bears to geometric
tangent: for these terms see [2]). This we show in Section 5.

Finally (Section 6) we point out that if we use two different forms of the
same relation to calculate differentials, then the definition in this paper ensures
automatically that we get the same result from each, whereas other definitions
do not have this desirable property.

2. DEFINITION 1. The line L through the point P of the point-set S is a tangent
to S at P if P is a limit-point of S and if, given any cone with vertex P and axis L,
the line PQ is instde the cone for every point Q of S near enough to P.

It is clear that a given set has at most one tangent at a given point, and that
all tangents to a plane set lie in the plane of the set.

DEFINITION 2. Given a relation between two variables, say x and y, we let .S be
the set of points whose coordinates satisfy the relation. We define a binary function
whose domain is a subset of S and whose values are ratios as follows: at any point
at which S has a tangent, the value of the function is the direction-ratio of the tangent.
The value of the function at (x, y) is traditionally denoted by dx:dy; and dx and dy
are called the differentials of x and y with respect to the given relation.

A statement such as “The differentials of ¥ and ¥y with respect to the relation
y=x? satisfy the equation dy=2x-dx” is traditionally stated as “If y=x2, then
dy=2x-dx.” (Of course, dy=2x-dx means neither more nor less than dx:dy
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=1:2x. Indeed, the only statements that can meaningfully be made about dx
and dy are statements about their mutual ratio: the statements “dx=2" and
“dx=(dy)?” mean nothing.)

3. We have at once the following results.

THEOREM 1. If F'(a) exists, then the value of dx:dy at [a, F(a)] with respect to
the relation y= F(x) is 1: F'(a).

THEOREM 2. If x=X(t), y=Y(t), tEI traces a simple arc, if a €1, and if the
ratio X' (a): Y'(a) exists: then the value of dx:dy at [X (a), Y(a) ] with respect to the
relation x=X(t), y=Y(¢), tEI, is X'(a): Y'(a).

TureorEM 3. If the ratio Y1 (a, b) :¢s(a, b) exists and if Y(a, b) =0 and if ¥ is
differentiable at (a, b), then the value of dx:dy at (a, b) with respect to the relation

Y(x, y)=01s
@) —v2(a, b): ¥1(a, D).

(Here ¥, and ¢, are the two partial derivatives of ¥.)
Proofs. Theorems 1 and 2 follow immediately from [2]. For Theorem 3, we
note that, because ¢ is differentiable at (a, b),

[¥(a+ kb + k) — ¥(a, 8) — h-yu(a, b) — k-¥s(a, b))/ (4> + ED)Y2— 0
as (h, k)—(0, 0). Then if (a+%, b+E) is on the graph of ¥ (x, y) =0, we have
(ht+Ekm)/(h*+ E)1V2—>0 as (h k) — (0,0),

where £=y1(a, b) and m=1yx»(a, b).

Now if # is the inclination of the line joining (a, b) to (a-+%, b+%) we have

cos #: sin u = hk;
and if v is the inclination of a line with direction-ratio (i) we have
cos v:siny = — m:{.
Therefore
|sin(u—9)| = |£-h+m-k| /(2 + B2 (&2 4+ m2)12 0

as (k, k)—(0, 0). It follows easily that the line through (a, b) with direction-ratio
(i) is the tangent there to the curve.

4. Note. If, in Theorem 3, we were to assume continuity of ¥; and ¢, in a
neighbourhood of (a, b), instead of mere differentiability of ¥ at (@, b), then the
theorem would follow as an easy corollary to the implicit-function theorem. In
this connection, it is interesting to notice that differentiability is not enough
for the implicit-function theorem.



662 CLASSROOM NOTES [June-July
Specifically: if

x— %y — y2-siny~! whenever y % 0
#(z, y) = {

whenever y = 0

then ¢(0, 0) =0, ¢,(0, 0) = — 50, ¢ is differentiable at (0, 0), but the equation
¢(x, ¥) =0 is not solvable for y at (0, 0).

Theorem 3 as quoted above, then, is stronger than the version obtained
from the implicit-function theorem. However, we cannot remove the differenti-
ability proviso from Theorem 3 and rely only on the existence of the two partial
derivatives (not both zero). Specifically: if

(85 — 39)/(x* + »?) whenever (x, y) % (0, 0)
¢ 3) = {o when (x, ) = (0, 0),

then ¢(0, 0) =0, ¢:1(0, 0) =8, ¢2(0, 0)= —1; but the line through (0, 0) with
direction-ratio 1:8 is not the tangent there to the curve ¢(x, y) =0. (In fact, the
tangent has direction-ratio 1:2.)

5. Once we have a valid definition of differential, we have an immediate
proof of the formula for differentiating a function of a function: if 2=G[F(x)]
we put F(x) =7v, whence 2=G(y). Then dz=G'(y) -dy and dy= F'(x) -dx, whence

dz = G'[F(x)]-F'(x)-dx.

(At present, this proof seems to be confined to nonrigorous treatments such as
[3], presumably because of the lack of rigorous definitions of tangent and
differential.)

Indeed, the function-of-a-function rule and the validity of the differential
are, in a sense, equivalent. If the function-of-a-function rule were proved inde-
pendently (as, indeed, in most treatments it is) then it could be made the
basis of an alternative (slightly less general) definition of differential, as follows.
We define dx:dy for a curve in parametric form x = X (), y= Y (¢). For the defini-
tion to be valid, this ratio must be proved independent of the choice of parameter
for the given curve. The crux of the proof turns out to be the function-of-a-
function rule. The details are as follows.

LeEMMA. If a simple arc S has parametrizations
x = X(2), y = Y(), ter
and
x = A(), vy = B(}), teJ
then there is a continuous function F with inverse G such that

X(t) = A[F ()], Y(t) = B[F(@)] whenever ¢ € I,
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and
A(t) = X[G@®)], B(@) = Y[G()] whenever t < J.

Moreover, if A'[F(c)]#0, then F'(c) exists.

Proof. All results, except possibly that expressed by the last sentence, are
well known. To prove the last result, we let ¢ = F(c) and define a function H by

A() — A(a)
H{) = — whenever t © J and t # a
—a
H(a) = A'(a).

Then lim,., H() =A4'(a), and H is continuous. Also

X)) — X() _ A[F@)] — A[F(@)]

t—c¢ l—c
F(i)—-F
= H[F(t)]-%ﬁ whenever t & I and ¢ 5 ¢.
—-c

Now

lim H[F(¢)] = lim H(t), because F is continuous
t—a

toe
= A’(a), as already proved
# 0.
Therefore, for every ¢ in some neighbourhood of ¢, H[F(¢)]#0, and so
F(t) — F(c) _ X@ — X(c)_ 1
t—c¢ t—c¢ H[F()]
Therefore F'(c) exists (and equals X'(c)/4'(a)).

Note. If C is an end-point, then the various limits, neighbourhoods, etc., are
one-sided, but the proof is otherwise unaltered.

THEOREM. If the simple arc S has the parametrizations cited in the lemma, if a
point has parameters ¢ and d respectively, and if the ratios X' (c): Y'(c) and A’ (d):
B'(d) exist, then they are equal.

Proof. The functions F and G of the lemma exist, and clearly F(c) =d. Hence,
if A’(d) 0, then F'(c) exists. Then X'(¢c)=A4'(d) - F'(c) and Y'(c)=B'(d) - F'(c).
Then F'(c)#0 (for otherwise X’(c) and Y’(c) would both be zero and so
their ratio would fail to exist) and so
X'(c):Y'(c) = A’(d):B'(d).

If, however, 4’(d) =0, then B’(d) #(5 and a similar proof holds.
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6. Sometimes a relation can appear in various different forms. For example,
the relations

(i) y=x2% (i) x=»%2 (iii) x=8,y=1* (iv) x2—3°=0,

are the same: every (%, ¥) belonging to any of them belongs to all of them.

From our definition, it follows that the differential-ratio with respect to a
given relation does not depend on the form in which the relation is expressed.
The traditional definition does not have this property; it can be checked in any
particular case, but there is no general theorem. (The existence of a vague feel-
ing that something of this kind is needed is shown by the inclusion in many
texts of a “consistency theorem?” to the effect that if dy is calculated in terms of
dx from the relations y= F(¢), t=G(x), and also from the relation y= F[G(x)],
then the results are the same. This covers only very special cases, and does not
suffice to show consistency for any pair of the equations above. It would, how-
ever, show consistency for y=¢2, t=x/% and (i).)

To turn for a moment to physics: Boyle's law can be written P-V==% or
P=Fk/V or V=Fk/P, and a physicist would unhesitatingly use any of these
forms to obtain the (isothermal) differentials dP and dV, and expect (without
need for checking) that they would give the same result. The physicist would be
right, and any treatment of differentials which does not yield this property is
inadequate for applications.

Here, then, is a point in which the present definition is superior not only
to the traditional definition but to the definition in [1].
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THE DENSITY OF PYTHAGOREAN RATIONALS
L. H. LANGE AND D. E. THORO, San Jose State College

If a, b, ¢ are positive integers which satisfy a?4-b2=c?, we call the number
a/b a Pythagorean rational. We give here two proofs of the following

TraEOREM. The set of all Pythagorean rationals is dense in the set of all nonnega-
tive real numbers.

We use the fact that if x and v are positive integers, then
(=2 — y9)% + 2xy)* = (=* + %)%

and hence, with x>y, (x2—9?)/2xy is a Pythagorean rational.

Proof 1. Let «, 8 be any prescribed real numbers which satisfy 0 Sa<g< .
We seek positive integers x and y, x>, such that a <(x?—y?)/2xy <B. Letting
t=x/y, this is equivalent to the search for a rational ¢ which satisfies
a<i(t—t1)<B. If we let g(t) =3(@—¢t") for all positive ¢, we have g(1)=0,
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lim;., g(f) = «, and g’'(#) =3(14£72) > 0. Thus, the function g is strictly increas-
ing. Hence there exist unique # and f, such that g(h) =«, g(ts) =8, and 1 <4 <ts.
The choice of any rational ¢ such that # <t<t, then yields a Pythagorean ra-
tional, g(¢), which satisfies a <g(t) <. Q.E.D.

In our second proof we use the density of the rationals once more, yet in a
different way, and employ an equivalent definition of density.

Proof 2. Let A=0 be specified. We seek a sequence {(xf— v2)/ (2x¢y,-)}, of
Pythagorean rationals such that

2 2
Xi — Vi

VERT

— Al

Now, there exists a sequence of distinct positive rationals {e;}, e;>1, such that
ei—N++/(A\*+1). Consequently,

1( 1
= ei——)—-ﬂ\.
2 €;

Setting e;=x;/y;, with x;>0, y,>0, we have

2 2
X = Yi

2x:y;

— A,

Various questions concerning the distribution of these Pythagorean ra-
tionals and certain interesting special sequences of such numbers will be con-
sidered in a lengthier paper to be published elsewhere.

PROOF OF A FUNDAMENTAL THEOREM ON SEQUENCES

Howarp E. BeLL, Harpur College

The following proof of a well-known theorem may be of interest to teachers
of beginning analysis courses.

THEOREM. Every sequence of real numbers has o monotone subsequence.
Let {a.) be a sequence of real numbers. Define
A= {1,| a; = a; for all except finitely many j },
B = {¢| a; = a; for all except finitely many j},
C=1-(4Y B),
where I represents the set of all positive integers. At least one of these sets must
be infinite.
If A4 is infinite, then for each i€ 4, T a jin 4, j>1, for which a;=a;; and we

can define a monotone nondecreasing subsequence {(a,,) of {a,) by choosing the
indices as follows:
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ny = the smallest integer in 4,

nr+1 = the smallest integer in A such that mg41 > m, and

Ony, S Cnpyyy E=1,2,---.

If B is infinite, we construct a monotone nonincreasing subsequence in an
analogous way.

In the event that both 4 and B are finite, there exist for each ¢&C integers
j, REC, j>1, k>1, such that a;<a; and e;>ax. By employing the previous
constructions, we can obtain both a monotone increasing subsequence and a
monotone decreasing subsequence.

MATHEMATICAL EDUCATION NOTES

Ep1TED BY JoHN R. MAYOR, AAAS and University of Maryland
COLLABORATING EDITOR: JOHN A, BROWN, University of Delaware

All material for this department should be sent to John R. Mayor, 1515 Massachusetts
Avenue, NW., Washington, D. C. 20005.

THE MATHEMATICAL TRIPOS AND MATHEMATICAL EDUCATION IN GREAT BRITAIN
Danier PepoOE, Purdue University

I must begin by explaining that the term Tripos is the name given to the
mathematical and other honours examinations held every year in the University
of Cambridge. The Mathematical Tripos was the first Honours examination in-
stituted by that University. This was in the 18th century. The term Tripos
originated in the three-legged stool, or tripod, which candidates sat on when they
had to prove their merit by disputation, or wrangling, before the advent of writ-
ten examinations. The term Wrangler is still preserved for those who obtain
honours in the Mathematical Tripos. Although examinations in other subjects
are also called Triposes, nobody but a mathematician is ever called a wrangler.
This makes one wonder how the old examinations in mathematics were con-
ducted! The term Senior Wrangler was reserved for the candidate who came
first in the Mathematical Tripos. Until 1910, when Wranglers were no longer
listed in order, the title of Senior Wrangler was much coveted, and the list of
Senior Wranglers includes many who subsequently did great work in mathe-
matics, such as Stokes, Cayley and the astronomer John Couch Adams, if we
restrict ourselves to the 19th century. Of course, many who subsequently be-
came great did not attain to the Senior Wranglership, but came lower down the
list. I need only mention James Clerk Maxwell, who was the second Wrangler
in 1854.
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mission on the Teaching of Science, of which he is president). The symposium discussed “The Coor-
dination of the Teaching of Mathematics and the Teaching of Science” and was attended by about
30 scientists from all fields and all parts of the world.

In October-November he was visiting professor in the Department of Mathematics, Middle
East Technical University, Ankara, Turkey. In December he held the Madras appointment. In
February and early March he functioned as visiting lecturer to the University of Pakistan, being
sponsored by the International Mathematical Union and the Pakistan Academy of Sciences. He
gave a general lecture also to the Pakistan Science Congress in Lyallpur in March.

News Release from the University of Chicago

COLLEGE ATTENDANCE BY MU ALPHA THETA MEMBERS

In January 600 questionnaires were mailed to all fifty states in a spot-check
of 1963 graduates who were members of MU ALpPuA THETA. These students
maintained a B average in high school and showed high ability in mathematics.

The national office of MU ALrPHA THETA reports that the 528 replies received
show that all but 4 are now enrolled in some college or university. Most students
replied that they were enjoying college; only 6 said they were not particularly
enjoying their college work. The 4 students who were not in college and had no
plans to enter college were all girls. One is married; the other three are employed.

PROBLEMS AND SOLUTIONS
Ep1TeED BY E. P. STARKE, Bloomfield College

CoLLABORATING EDITORS: J. BARLAZ, Rutgers—The State University; A. E. LIVINGSTON,
University of Alberta; L. CArRLITZ, Duke University; H. S. M. COoXETER, University of
Toronto; H. EvEs, University of Maine; and A. WiLANSKY, Lehigh University.

All problems (both elementary and advanced) proposed for inclusion in this Department
should be sent to E. P. Starke, Bloomfield College, Bloomfield, N. J. Proposers of problems
are urged to enclose any solutions or information that will assist the editors. Ordinarily,
problems in well-known textbooks and results in generally accessible sources are not appropri-
ate for this Department. No solution (other than proposers') should be sent to Professor Starke.

ELEMENTARY PROBLEMS

All solutions of Elementary Problems should be sent to A. E. Livingston, Dept. of Math., Uni-
versity of Alberta, Edmonton, Alberta, Canada. To facilitate their consideration, solutions for
Elementary Problems in this issue should be submitted on separate, signed sheets and should
be mailed before September 30, 1964.

E 1701. Proposed by R. F. Jackson, University of Toledo

Prove that for any three points on a parabola with vertical axis,

my = My + Mz — M,
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where m, is the slope of the tangent at the first point and m; is the slope of the
chord through the corresponding pair of points.(This is an occasionally useful
formula for numerical differentiation with irregularly spaced points.)

E 1702. Proposed by Douglas Lind, Falls Church, Virginia

Prove that an integer p divides » 2= j(j!) if and only if p is prime.
E 1703. Proposed by Gydrfis Andrds, Eitvis University, Budapest, Hungary

A circle of radius R is completely covered with strips of scotch tape of various
widths. Prove that the sum of the widths of the strips is not smaller than 2R.

E 1704. Proposed by Stephen Hoffman, Trinity College, and R. B. Killgrove,
San Diego State College

If R is an mXn rectangle formed from unit squares, find the number of
squares containing a segment of one diagonal of R.

E 1705. Proposed by David and Geralda Singmaster, Berkeley, California

Given a triangle with sides a, b, ¢, with a £b =c. Define the skewness of the
triangle to be

S = max (a/b, b/c, ¢/a) min (a/b, b/c, c/a).

Find the maximum and minimum skewness of a triangle. What triangles achieve
the maximum and minimum?

E 1706. Proposed by Michael Fried, University of Michigan

The convex subarea of a convex m-gon is the area in the plane in which a
point may be placed such that this point plus the vertices of the #-gon form
a convex (n-+1)-gon. If S represents the perimeter of a convex n-gon, what is
the minimum possible value for its convex subarea?

E 1707. Proposed by D. P. Roselle, Duke University

Prove that the nth order determinant IA,,(x)I, where A4,,(x) =x0-1 00
has the value [[32] (1 —x7)»—i.

E 1708. Proposed by J. F. Ramaley, University of California at Berkeley

Call a matrix M integral if and only if the entries of the matrix are all inte-
gers. Given #» integers ay, * * -, @, show that there exists an #X# integral
matrix M whose first row consists of the # given integers and whose inverse is
also integral if and only if g.c.d.(ay, - - -, @,) =1.

E 1709. Proposed by Jack Winter, System Development Corporation, Santa
Monica, California

Show that, for any positive integer #, there exists a sequence of at least #
consecutive integers each of which contains a squared factor.
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E 1710. Proposed by D. I. A. Cohen, Princeton University, and Ralph Green-
berg, University of Pennsylvania

If a and b are relatively prime integers, prove that there are infinitely many
perfect powers of the form an-b.

SOLUTIONS OF ELEMENTARY PROBLEMS
An Adieu to 1963

E 1621 [1963, 890]. Proposed by Arthur Engel, Stuttgart, Germany

What is the smallest value of a for which 82*+a69~ is divisible by 1963 for
all odd positive integers n?

I. Solution by R. J. Herbert, D. T. Kexel, and P. J. Welsh, John Carroll Uni-
versity. Note that 1963 =(151)(13). Since 827+697»=0 mod 151 and 827— 69~
=0 mod 13 for all odd #, we must have ¢ =1 mod 151 and = —1 mod 13. The
smallest positive value for a is 454.

I1. Solution by Nyles Barnert, Arcon Corporation, Lexington, Mass. We em-
ploy the lemma: If x2—y? divides x+ay, then it divides x?"t14ay?t1 for all n.
For the given problem, we set x =382, y=69, then x2—y2=1963. We need only
find the smallest ¢ such that 1963 divides 82469a. This yields a =454 as the
solution.

Also solved by Gy4rfds Andrés, Joseph Arkin, J. W. Baldwin, Merrill Barnebey, Walter
Bluger, Adelaide J. Brooks, Brother R. F. Schnepp, Sarvadaman Chowla, B. G. Clark, D. 1. A.
Cohen, M. J. Cohen, Hiiseyin Demir, C. L. Dotton, F. J. Duarte, Philip Franklin, Michael Fried,
Anton Glaser, Michael Goldberg, Myron Goldstone, Jerry Goodman, Ralph Greenberg, S. H.
Greene, Emil Grosswald, J. H. Halton, R. F. Jackson, J. E. Jean, Jr., Erwin Just and Norman
Schaumberger (jointly), Frank Kocher, Sidney Kravitz, A. I. Lieberman, N. F. Lindquist, J. J.
Malone, Jr., D. C. B. Marsh, Michael Merritt, P. N. Muller, K. A, K. Murthy, Walter Penney,
Stanton Philipp, M. Raghavachari, T. S. Ravisankar, Robert Spitz, J. K. Stewart, G. C. Thomp-
son, A. M. Vaidya, Simon Vatriquant, Gary Venter, W. C. Waterhouse, Charles Wexler, Oswald
Wyler, Aleksandras Zujus, and the proposer.

Barnert and Venter showed that if nonintegral a are permitted, then ¢ =1881/69; Lieberman,
Merritt, and Muller showed that if # is even, then a =1962. To anticipate similar problems for the
next two years, Franklin pointed out that 2487-4(492)243» is divisible by 1964 for all odd #,
and 737+4-(1049)58" is divisible by 1965 for all odd #.

Convergence of Two Series

E 1622 [1963, 890]. Proposed by Michael Gemignani, University of Notre
Dame

Determine for what values of x the following series converge:
1) > (sin 1/m)2, 2) > (1 — cos1/m)e.
n=1 n=1

Solution by Stanton Philipp, Seal Beach, Calif. One can see from the Taylor
series of sin 1/# and (1 —cos 1/#) in powers of 1/# that 1/2n<sin 1/2<1/n and
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1/4n?<1—cos 1/n<1/2n% It follows immediately that (1) converges for
Re(x)>1 and (2) converges for Re(x) >1/2.

Also solved by E. R. Barnes, H. L. Chow, D. I. A, Cohen, M. J. Cohen, Frank Dapkus, J. A.
Faucher, Michael Fried, Ralph Greenberg, Cornelius Groenewoud, Emil Grosswald, Eldon
Hansen, H. E. Heatherly, Erwin Just and Norman Schaumberger (jointly), Joel Kugelmass,
E. S. Langford, R. D. Leitch, A. 1. Lieberman, E. L. Magnuson, D. C. B. Marsh, Morris Mordu-
chow, C. B. A. Peck, L. J. Pratte, George Purdy, Perry Scheinok, C. P. Seguin, D. L. Silverman,
R. A. Smith and A. M. Vaidya (jointly), O. E. Stanaitis, Rory Thompson, Andy Vince, Charles
Wexler, Raymond Whitney, and Oswald Wyler. Solved partially by Merrill Barnebey, Michael
Goldberg, D. E. Myers, W. C. Waterhouse, and the proposer.

The Richness of Mathematical Attack

E 1623 [1963, 891]. Proposed by R. C. Thompson, University of British
Columbia

Let f(x) be a monic polynomial of degree # with distinct zeros x1, %3, - * * , %,.
Let g(x) be any monic polynomial of degree n—1. Show that

2 gl /f (xy) = 1.
Jj=1
1. Solution by F. R. Olson, State University of New York at Buffalo. Let
fi®) = II (& — %) = f(@)/(x — ).

i#f
Then f’'(x;) =f;(x;). In terms of Lagrange’s interpolation formula
g(®) = 22 g(®)fs(®)/fi(xs).
j=1

Division of the (z—1)-th derivative of each side by (z—1)! yields the desired
result.

I1. Solution by W. C. Waterhouse, Harvard University. Expanding in partial
fractions we have

www=§&wmwm—mﬂ

Now multiply by x and let x— .

I11. Solution by A. E. Danese, State University of New York at Buffalo. Let
7(2) =g(2)/f(2). Then z=ux;, x,, - - -, %, are the only singular points of 7 and
they are simple poles. Hence the sum of the residues of 7 at these poles is

A =3 gw)/f ).

j=1

The residue of 7 at 2=« equals the residue of —7(1/2)/s? at =0, which is
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readily determined as —1. Since the sum of the residues at all the singular
points and at the point of infinity is zero, we have that 4 =1.

Also solved by Martin Billik and Eldon Hansen (jointly), J. L. Brown, Jr., Leonard Carlitz,
A. J. Chandy, D. 1. A. Cohen, M. J. Cohen and Nicholas Derzko (jointly), J. B. Deeds, Hiiseyin
Demir, Michael Fried, Myron Goldstein, S. H. Greene, W. J. Hartman, J. C. Hickman, V. E.
Hoggatt, Jr., R. A. Jacobson, Erwin Just and Norman Schaumberger (jointly), A. M. Kriegsman,
D. C. B. Marsh, Jim Morrow, M. G. Murdeshwar, C. B. A. Peck, Stanton Philipp, Henry Ricardo,
S. M. Robinson, Perry Scheinok, C. P. Seguin, R. F. Shanny, O. E. Stanaitis, E. C. Stopher,
V. Vitek, J. E. Wilkins, Jr., A. B. Wilcox, K. S. Williams, Oswald Wyler, David Zeitlin, and the
proposer.

This problem was solved by many ingenious attacks. For example, in addition to the above
(which were the most commonly employed methods): Hartman, Hickman, and Robinson em-
ployed the formula for the (z—1)-st divided difference for an arbitrary polynomial of degree
k <n—1; Murdeshwar used a result in the theory of equations given as Problem 4, p. 172 of vol.
1 of Burnside and Panton, The Theory of Equations (5th ed.); Fried, Goldstein, Scheinok, and
Wyler used some theory of Vandermonde determinants; Demir employed two geometrical rela-
tions of Chasles and Euler involving # distinct fixed points and one arbitrary point of a line.

A Correct and an Incorrect Inequality
E 1624 [1963, 891]. Proposed by C. M. Frye, San Mateo, California

Prove, for all integers #>2, that (2n—1)"+(2n)"<(2n+1)* and that
2n)*+2n+1)»> 2n+2)".

Solution by Erwin Just and Norman Schaumberger, Bronx Community College.
The first inequality is equivalent to (2+1/#)"— (2 —1/%#)"> 2, which is readily
verified for #>2 by expanding the left side of the inequality. The second
assertion is false; for lim,., [(14+1/2)"—(1+1/2n)*]=e—+/e>1, and it fol-
lows that, for » sufficiently large, (1+1/n)*— (1+1/2n)»>1. Multiplying both
sides of the latter inequality by (2#)* we obtain (2z-+2)"— (2z4-1)"> (2n)",
which contradicts the second inequality.

Also solved by A. N. Aheart, Joseph Arkin, J. W. Baldwin, Adelaide J. Brooks, Leonard
Carlitz, Allan Chuck, B. G. Clark, M. J. Cohen, Hiiseyin Demir, G. C. Dodds, J. A. Faucher, C. E.
Franti, Michael Fried, Myron Goldstein, R. B. Grayless, S. H. Greene, Emil Grosswald, J. R.
Hanna, Eldon Hansen, Mark Hayamizu, Stephen Hoffman, R. F. Jackson, A. M. Kriegsman,
N. F. Lindquist, D. C. B. Marsh and W. H. Laubach (jointly), Stanton Philipp, Arthur Porges,
George Purdy, Marlow Sholander, O. E. Stanaitis, G. C. Thompson, Simon Vatriquant, Charles

Wexler, Aleksandras Zujus, and the proposer. A number of these solutions were only partially
correct.

It can be shown that the second inequality is true if 1 <# <15, but is false if #=16. In con-
nection with the first inequality, Sholander established the more general result: “Given integer
n>2 and real numbers x, y, 2 such that 0<x=<y—1=2—2, then x*}y*=2" implies x >2n~—1,
y>2n, 2>2n-+1." Hansen showed that the second inequality should be replaced by (2n+2)*
—(2n)*<2(2n+1)" sinh (1/2).

An Application of the Arithmetic-Geometric Inequality

E 1625 [1963, 891]. Proposed by J. L. Brown, Jr., Pennsylvania State Uni-
versity

Let # be a positive integer, o(n#) the sum of the positive divisors of #, and
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t(n) the number of these positive divisors. Show that o (n)/t(n) Z/n.

Solution by E. L. Magnuson, HRB-Singer, Inc., State College, Pa. Consider
the divisors in pairs %, v, where xy=n. For each pair, (x+y)/2=+/xy=/n.
Summing corresponding sides of this inequality over all pairs gives o(n)/2
z [t(n)/2]v/n, or a(n)/t(n) Z /.

Also solved by A. N. Aheart, Jeanne A. Baird, J. W. Baldwin, E. R. Barnes, William Becker,
D. A. Breault, Leonard Carlitz, Allan Chuck, B. G. Clark, D. I. A. Cohen, D. M. Cohen, Martin
Cohen, D. M. Danvers, J. B. Deeds, Hiiseyin Demir, Michael Fried, Anton Glaser, David Golber,
Jerry Goodman, Ralph Greenberg, Cornelius Groenewoud, Emil Grosswald, R. F. Jackson,
Erwin Just and Norman Schaumberger (jointly), J. C. Lazzara, A. E. Livingston and M. G.
Murdeshwar (jointly), C. R. MacCluer, Andrzej Makowski, D. C. B. Marsh, Robert Marsh,
Michael Merritt, P. N. Muller, W. I. Nissen, Jr., J. H. Oppenheim, Stanton Philipp, M. Perisastri,
A. M. Vaidya, Andy Vince, W. C. Waterhouse, Charles Wexler, Raymond Whitney, K. S. Williams,
K. L. Yocom, and the proposer.

An Extension of the Steiner-Lehmus Theorem

E 1626 [1963, 891]. Proposed by Cornelius Mack, Bradford Institute of Tech-
nology, Bradford, England

Given that X, Y are points on the sides BC, 4 C of a triangle ABC such that
X XAB: X CAB= X YBA: X.CBA=N\:1, where 0<\<1, show that

(a) AX>BY implies AC> BC, and conversely,

(b) CY>CX implies AC> BC, and conversely,

(c) AY>BX implies AC>BC, and conversely, provided that 0<A=0.5,
but that there exist triangles for which this is not true if 0.5 <A <1.

Solution by the proposer. (a) Now X AXC=B+NA, X BYC=A+\B. Hence
AX sin (B4+A4)=AC sin C. Similarly, BY sin (4 +AB)=CB sin C. Hence

AX/BY = sin Bsin (4 4 AB)/sin 4 sin (B + \4).
Consider
a = 2sin Bsin (4 + AB) — 2sin 4 sin (B 4+ A 4).
If we set 1 —A=p, then
o = cos (uB — A) — cos (4 + B +AB) — cos (B — ud) + cos (4 + B +7\A)
Collecting the first and third, and the second and fourth terms we get
(1) o = 2 sin Mg sin (2 — N)8 + 2 sin M sin (2 + N)¢,

where 20=B—A4, 2¢=B+A. If B> A, then, since 0<B+4 <7 and 0<A <1,
we have 0 <N <Ap<7/2; (2—N)0<B—A <. If, further,

Q+Ne=U+N2)(B+ 4) <,

every term in (1) is positive, and therefore so is a. If (14+N/2)(B+4)>m,
nevertheless (1+\/2)(B+A4)—m <\¢. Hence —sin(24+N)¢ <sin A¢. But
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sin (2 — A)6 — sinA0 = 2 sin uf cos § > 0.

Hence o>0 in this case also. But if a>0, then AX>BY. By symmetry, if
A>B,then BY>AX. Hence B> A implies AX > BY and conversely, and B=4
implies A X =BY and conversely.
(c) Now AY/BX =sin AB sin (B+\A4)/sin A sin (4 +XB). Consider
8 = 2sinABsin (B + A4) — 2sin A4 sin (4 4+ AB)
= cos (uB + A4) — cos {B + A4 + B)} — cos (ud + \B)
+ cos {4 + N\ (4 + B)}

= 2sin ¢ sin pf + 2 sin6sin (2 — p)¢ = f(0, $), say,
where p=2u—1=1—2\. If 0<A=0.5, then p>0 and every term in f(0, ¢) is
positive if B>A. Hence 8>0 and 4Y>BX. Again, if 4> B, then BX>A4Y,
and so if 0<KN=0.5, AY>BX implies AC> BC and conversely. If A=0.5+r¢,
€>0, then p=0.5—¢€ and p <0. Since 2¢ =4 + B can approach = it is possible to
choose A+B so that (2—p)¢ >, in which case both products in f(f, ¢) are

negative, and so with B> 4 it is possible to have 4 ¥ <BX and conversely.
(b) This is surprisingly difficult. We have

CX = ACsinud/sin W4 + B), CY = CBsin uB/sin A\B + 4).
Hence
CY/CX = sin \4 + B) sin uB sin A/sin AB + A) sin u4 sin B.
Consider
v = sin A4 + B) sinuBsin 4 — sin A\B + 4) sin u4 sin B
= sin (4 + B){cos wA sin uBsin A — cos uB sin u4 sin B}
+ (sin B — sin 4) cos (A + B) sin uA sin uB.
Hence
v/cos ¢ = sin ¢>{(sin B + sin A) sin 2uf — (sin B — sin 4) sin 2ué}
+ 2sin @ cos (4 + B) sin uA sin uB,
and
/(2 cos ¢) = sin? qS{sin 2uf cos 8 — cos 2uf sin 0}
— sin ¢ sin 0{ sin 2u¢ cos ¢ — cos 2u¢ sin qS} + sinfsinud sinuB
= sin? ¢ sin pf — sin ¢ sin 0 sin p¢p + sin 8 sin uA4 sin pB.
Now, since if 0<u=0.5, p=2u—1<0, and if B> 4,
sin (1 — 2u)¢/sin ¢ > sin (1 — 2u)0/sin 6,

since sin wx/sin x is an increasing function of x for 0 <w<1, 0 <x <w. Hence
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v/(2 cos ¢) >0, and therefore ¥>0. Hence CY > CX. If u>0.5, then, since
2 sin ud sin uB = cos (p + 1)§ — cos (p + 1)¢,
we see from above that
v/cos ¢ = (2 sin? ¢ — sin?6) sin pf — 2 sin 6 sin ¢ sin p¢ -+ sin @
-+ sin 0{cos p0 cos § — cos p¢ cos q&}
= 2(sin? ¢ — sin?6) sin p + sin 6{ cos (1 — p)8 — cos (1 — p)é}.
But 0<(1—p)0 <(1—p)¢ <m/2. Hence every term in our expression for v/cos ¢

is positive. Hence ¥>0, and therefore CY>CX; and so CY>CX implies AC
> BC and conversely, while CY=CX implies AC=BC.

Editorial Note. Simpler solutions to this problem, particularly to part (b), are invited.
Square-Free Integers
E 1627 [1963, 891]. Proposed by Ralph Greenberg, University of Pennsylvania

Prove that every positive integer except 1 is the sum of two square-free inte-
gers.

Solution by Sarvadaman Chowla, R. A. Smith, and A. M. Vaidya, Pennsyl-
vania State University. If for a real number x, Q(x) denotes the number of square-
free positive integers less than or equal to x, then it is enough to show that

Q(x) > (x+1)/2; for then, if x4, - - -, x; be the square-free positive integers =,
consider the two sets
Mlz{xl,---,xk}, Mzz{n——xl,n-,n——xk}.

M, contains k distinct positive integers <z and M, contains % distinct non-
negative integers strictly less than #, that is, M, contains at least £—1 distinct
positive integers strictly less than #. Since 2k—1>#, we have an x;# and an
x; such that x;=#—x;. Then # is the sum of two square-free positive integers
x; and x;. We shall show that Q(n)> (n+1)/2 for n=385. The assertion of the
problem can be verified directly for all smaller values of n.
It can easily be shown (see, e.g., Landau’s Primzahlen, p. 581) that
Q@) = 22 n(n)[a/n?,
nsVvz

where p(#) is the Mébius function and [#] denotes as usual the greatest integer
= u. Therefore

0 x; w()/n? — x{ Y w4 Y un)a/nt [x/nzl)}

n>vz nsvVz

(6/7%)x — {S1 + S,}, say.
Now it can be proved by elementary means that
|S1] €14+ +/& and |S,]| < v
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Hence
| Q@) — (6/7%)x| < 1+ 24/x.
Now if x =385, then
14 2+/x £ 7x/66 — 1/2.

So finally, for » =385,
Qn) > (6/x* — 7/66)n 4+ 1/2 > (20/33 — 7/66)n + 1/2 = (n 4 1)/2.

Also solved by Gy4rf4s Andr4s, J. W. Baldwin, W. R. Becker, David Bienenfeld, M. J. Cohen,
Frank Dapkus, George Diderrich, Michael Fried, S. H. Greene, Emil Grosswald, Ned Harrell, R. A.
Jacobson, D. C. B. Marsh, Michael Merritt, Stanton Philipp, G. C. Thompson, Jack Winter, and
the proposer.

A number of these solutions were open to criticism.

Vaidya called attention to T. Estermann’s paper, “On the representation of a number as the
sum of two numbers not divisible by kth powers,” in the J. Lorndon Math. Soc., 6 (1931) 37-40.
It may be of interest to know that Estermann has proved (¢bsd, 219-221) that every large number
is the sum of a prime and a square-free integer.

Some Triangle Inequalities Involving the Angle Bisectors
E 1628 [1963, 891]. Proposed by Leonard Carlitz, Duke University

Let 4, f, t. denote the angle bisectors of a triangle, 7 the inradius, R the cir-
cumradius, and s the semiperimeter. Show that

) et th+tass,
(2) tols + s + taty < 75 (4R + 1),
®) latole < 72,

In each case there is equality if and only if the triangle is equilateral.

Solution by Stanton Philipp, Seal Beach, Calif. 1t is easy to prove that
ta=[2+bc/(b+c)]vs(s—a). Then t,<+/s(s—a), with equality if and only if
b=c. Similar statements hold, of course, for # and f,. Now the assertions to be
proved follow immediately, since bc+ca-+tab=s2+4rR+r%, 2s=a-+b+tc,
rs?=+/53(s—a)(s—b)(s—c).

Also solved by A. N. Aheart, W. J. Blundon, H. W. Guggenheimer, J. S. Leon, Franz Leuen-
berger, Andrzej Makowski, D. C. B. Marsh, and the proposer.

A Condition for a Semigroup to be an Abelian Group
E 1629 [1963, 891]. Proposed by F. M. Sioson, University of Hawaii

Show that any associative system S satisfying the identity x2y=y=yx2is a
commutative group.

1. Solution by Roy Dubisch, University of Washington, and B. E. Rhoades,
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Berkeley, Calif. The given identity implies x?=¢ and each x is its own inverse.
(xy)2=c¢ yields xy=ylx"t=1yx.

I1. Solution by C. M. Geschke, John Carroll University. By a well-known
theorem any associative system is a group with respect to a binary composition
if it contains an identity from the right (#) and for every element y a right in-
verse (v,) with respect to 7. Now yx2=y—x?=r and yy=y*=r—y=y,. Hence S
is a group. Also, xx=r=x(yy)x=(xy) (yx)—>yx = (xy),. But (xy),=xy. Hence S
is commutative. The proof shows that the hypothesis can be weakened by re-
quiring only the identity yx?=1y to be satisfied.

Also solved by A. N. Aheart, Joseph Altinger, W. H. Bailey, K. F. Bailie, Nyles Barnert,
Ralph Bennett, D. A. Breault, Brother T. C. Wesselkamper, R. J. Bumcrot, F. B. Cannonito,
Leonard Carlitz, A. J. Chandy, D. 1. A. Cohen, M. J. Cohen, R. J. Cormier, D. M. Danvers,
J. B. Deeds, Hiiseyin Demir, George Diderrich, Roy Feinman, M. S. Fineman, T. S. Frank,
Michael Fried, J. A. Glasenapp and T. C. Upson (jointly), Anton Glaser, Jack Goebel, Michael
Goldberg, Myron Goldstein, D. J. Hansen, Dunstan Hayden, H. E. Heatherly, Stephen Hoffman,
J. E. Homer, Jr., W. D. Jackson, R. A. Jacobson, Erwin Just and Norman Schaumberger (jointly),
P. L. Kingston, Max Klicker, Joel Kugelmass, J. Kuzmanovich, E. S. Langford, J. F. Leetch,
Joel Levy and P. Meyers (jointly), Jiang Luh, R. J. Lundgren, C. R. MacCluer, J. J. Malone, Jr.,
D. C. B. Marsh, Stephen Montague, Jim Morrow, M. G. Murdeshwar, D. E. Myers, John Nichols,
W. 1. Nissen, Jr., C. B. A. Peck, M. Perisastri, Stanton Philipp, D. T. Price, George Purdy, T. S.
Ravisankar, P. N. Rheinstein, James Riddell, Azriel Rosenfeld, Perry Scheinok, Marlow Sholander,
D. L. Silverman, John Stout, Rory Thompson, A. M. Vaidya, W. C. Waterhouse, Ron Wilder,
J. E. Wilkins, Jr., A. B. Wilcox, Oswald Wyler, K. L. Yocom, and the proposer.

A Bounded Solution of a Differential Equation
E 1630 [1963, 891]. Proposed by Reuben Hersh, Stanford University

If the polynomial P(x) has no purely imaginary zeros, and if the function f
satisfies I f(x) l <1 for all real x, then the ordinary differential equation P(D)u=f
has exactly one solution #(x) which is bounded for all x, and that bound can be
chosen as the product of the reciprocals of the real parts of the zeros of P.

Solution by Oswald Wyler, University of New Mexico. Since no solution of
P(D)u=0 is bounded for all real x, there is at most one bounded solution of
P(D)u=f for bounded f. Denote it (if it exists) by P*f. If P=QR, then P*f
= Q*(R*f) =R*(Q*f) if Q* and R* are defined. Thus it is enough to produce
P*f for P(x)=x—c. We put

(P*)(x) = fxe”(""f(t)dt, if Rec < 04

-G

(P¥)(x) = — f Ceet-0f()dt, i Rec > 0.

z

One checks easily that I(P*f) (x)[ =K/ I Re c[ for all real x if I f(x)l =<K for all
real x, and that D(P*f) —c(P*f) =J, if either Re ¢ <0 or Re ¢>0.

Also solved by the proposer.
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ADVANCED PROBLEMS

All solutions of Advanced Problems should be sent to J. Barlaz, Rutgers—The State Univer-
sity, New Brunswick, N. J. Solutions of Advanced Problems in this issue should be submitted
on separate, signed sheets and should be mailed before December 31, 1964.

5209. Proposed by Bezalel Peleg, Hebrew University, Jerusalem

For each matrix B whose entries are rational numbers, let 7(B) be the least
common denominator of the entries of B. Show that for each %, there is a non-
singular # X# matrix 4 all of whose entries are 0, 1 or —1, such that

R M Y
215

Hadamard’s formula yields m(4—1) S»»/2. Can either estimate be improved?

5210. Proposed by T. J. Kaczynski, Evergreen Park, Illinots

Let K be an algebraic system with two binary operations (one written addi-
tively, the other multiplicatively), satisfying:

(1) K is an abelian group under addition,

(2) K- {0} is a group under multiplication, and

3) x(y+2)=xy+xz for all x, y, &€ K.
Suppose that for some #, 0=14+14 - - - 41 (n times). Prove that, for all
xEK, (—)x=—x.

5211. Proposed by R. M. Redheffer, University of California, Los Angeles

A function #&€C? attains a minimum of value 0 at an interior point of a
region B. If the second partial derivatives satisfy ) <1, and if every pair of
points of B can be joined by a string of length +/2 lying wholly in B, then
u <1 throughout B.

5212. Proposed by L. Carlitz, Duke University

Let p be prime and let ¥(a) = (a/p), the Legendre symbol. Show that, if
abed #0 (mod p), then

»—1

S= Y y(ayz + bax + cxy + dxys) = — [Y(—abo)]p.

z,4,2=0
5213. Proposed by T. I. Seidman, The Boeing Co., Seaitle

Let X be a Banach space, S a closed convex set in X, & (X —.5), ©ES.
Let d =inf {||x,—«||: x€S} and let x' €S be such that ||l¢o—x'|| <d+e. Prove or
disprove that ||, — /|| < ||x: — || +e.

5214. Proposed by E. D. Nix, Norwich, Vermont

Exhibit, or prove the nonexistence of, an arcwise connected topological
space S having more than one point and which is not a homeomorph of any
open set of any finite-dimensional Euclidean space, such that

m(47Y) z

1 ~ 0.9(1.6)"



690 PROBLEMS AND SOLUTIONS [June-July

a) homeomorphisms between subsets of S preserve the property of having
nonempty interiors.

b) if p and ¢ are any (not necessarily distinct) points of S and if U, and U,
are any neighborhoods respectively of p and ¢, then there exists a neighborhood
V,of gsuch that V,C U, and V,is homeomorphic to U, with a homeomorphism
h: U,—V, such that k(p) =g.

5215. Proposed by A. Wilansky, Lehigh University

Prove that a topological group (with more than one element) has the discrete
topology if and only if it has a compact open subset which includes no right
translate of itself.

5216. Proposed by Oswald Wyler, University of New Mexico

Let p be a prime and let F, be the nth Fibonacci number (Fi=F,=1, F.
= F,+ F,_1). Show that:

(@) Fp1=0 (mod p), Fp,=1 (mod p), if p= +1 (mod 5).

(b) Fp=—1 (mod p), Fpy1=0 (mod p), if p= +2 (mod 3).

5217. Proposed by Otomar Hajek, Prague, Czechoslovakia

Given a real-valued function f on a compact interval JCE! of class Lipy
lie., ] f(x)— f(y)| éA]x—y| for x, yEJ], prove that there exist polynomials
pn with p,—f uniformly on J, p, in the same class Lip} on J.

Using this one may show that for Lip} maps from a compact parallelepiped
of E? to E, there exist uniform polynomial approximations in Lip},/; (in the
Euclidean norm). Can this be sharpened to Lip}?

SOLUTIONS OF ADVANCED PROBLEMS
Convergents of a Continued Fraction

5111 [1963, 672]. Proposed by W. A. Schneider, Milwaukee, Wisconsin

If P,/Q, is the nth convergent of the continued fraction for 4/(x2+41), then
arccot Pa,—1=2 arccot Qs, —arccot Pa,q1.

Solution by D. Suryanarayana, Andhra University, Waltair, India. The pro-
posed continued fraction is

n 1 1

x —_— o o .

22+ 2x+

We have the following relations:

1) Poniy = 24Py, + Pan_1, 2 P:n — Pon_1Pony1 = x + 1,
@3 Ph— G +1D0m=1, @ @+ 1)0um = ©Pu + Pons.

[(1) and (2) can be proved by induction on #, and for (3) and (4) see Barnard
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and Child, Higher Algebra, pp. 534-535.] By virtue of the above four relations
it is not hard to show that

2
Pon1Pony1 — 1 _ Q:m — 1
Py i+ Pont1 2Q2a

That is, cot {arccot Pa,—1+arccot Paup1} =cot {arccot Qz.} which implies the
required result.

Also solved by A. N. Aheart, L. Carlitz, Walter Penney, and J. M. Quoniam.

Non-Archimedean Field
5112 [1963, 672]. Proposed by N. R. Riesenberg, University of Wisconsin

In Dieudonné, Foundations of Modern Analysis (Academic Press, N. Y.,
1960), a real number system is defined as a field which (1) is Archimedean or-
dered, and (2) possesses the nested interval property. It is well known that
neither (1) nor (2) alone suffices to give a real number system and many exam-
ples of Archimedean ordered fields which are not real number systems are in the
literature. Give an example of a field which is non-Archimedean ordered but
which possesses the nested interval property.

Solution by David W. Dean, Duke University. Let F be the field of formal
power series over the reals. Say that > ¢ ang*=0 if a, 20 for all #. An interval
in Fis a set of the form [4, B]={CEF|4A<C<B}.

Suppose [4; B;] is a decreasing sequence of intervals, and that 4;
=2 sads, B;= Z,,,o bPz». Then [a¥, b¥] is a decreasing sequence of
closed real intervals for each #, and so there exists ¢, such that

0

Cn E n [ (J) (J)].

=1

The series D ..o C.2" is then in each [4}, B;] and so is in N;2, [4;, B;].
Finally F is not Archimedean as 1 and 2 are not related at all.
Also solved by R. O. Davies.

Sum of an Infinite Series
5113 [1963, 672]. Proposed by J. S. Frame, Michigan State University

Sum the series
S = Z( )( 16)~*(2k 4 1)—2.

Solution by A. Weinmann, The University, Leicester, England. The required
sum S can be transformed into a definite integral by using an integral repre-
sentation for (2k+1)—2. Thus
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o«

S=2 (2:> (—16)*(2k + 1)

k=0

0 -1 0

Z( 2) (%)kf e~ CQk+1) ¢4y
k=0 k 0
J,

on using the substitution e~¢= (22—

te—t

(1 + %e—m)l/z

f" logz
G+

o]
c=f g
1

z
dz =
2

3(log a)?,

and e is the positive root of a2=a--1. Let

L log z
f dz
0 (Z+ 1)

Remembering a?2=a-1 where needed, we have

1 1 1
__1_2_+_2_2__§;+...

[June-July

dt =2(4 + B - C),

1)/z and integrating by parts; here

¢ logz
= f g dz,
1 (Z - 1)

= — 72/12,

¢ log (z — 1)
B = log a-log (a—l)—f —dz (by parts)
1 2
(log @)* — D f“l 1ogt ( =1
= — (loga)?— D — - 1=
¢ . w+rn” :
- —20-D-— log » 1=1
= . v(v+1) (t=1/v)
=—20—D—-C+ A4=—D-3C+ 4;
a 2210gz e log (l—l— 1)
A B=f _.—f 2 —
+ (22_1) dt (2 =t+1)
=3%log(a+ 1)-logea— 3D —1% (by parts)

2C — 1D — 4.

Elimination of 4 and B from these various results gives S in terms of known

C and D, so that we obtain finally S=#2/10.

Also solved by L. F. Epstein, R. P. Kenan and M. L. Glasser, R. N. Kesarwani, J. Koekoek,
Franklin C. Smith, J. H. van Lint, K. W. van Weerden, Jet Wimp, and the proposer.
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Function with Uncountable Number of Horizontal Tangents

5114 [1963, 672]. Proposed by W. E. Johnson and C. M. Petty, Lockheed
Aircraft Corp., Sunnyvale, California

Let the function F(f) have a continuous derivative on [0, 1] and set
S1= {t: F'(r) =0}, Se= {F(t): tESl}. Show by an example that the set S; may
be uncountable.

Solution by W. C. Waterhouse, Harvard University. Let g(x) =0 on the Cantor
set and g(x) =(x—a)(b—x) in each interval (a, b) forming the complement of
the Cantor set. Let F(x) = [ g; then F’ =g is continuous, and S; is the uncounta-
ble Cantor set. Since {x: g2(x) >O} is everywhere dense, F is strictly increasing,
and hence one-to-one; therefore S; is also uncountable.

Also solved by I. N. Baker, Robert Bowen, R. O. Davies, J. L. Denny, R. A. Jacobson, K. F.
Kinneberg, K. O. Leland, Solomon Marcus, Ron Rietz, J. M. Shaw and J. F. Standish, D. E.
Varberg, Oswald Wyler, Larry Zalcman, J. A. Zilber, and the proposers.

Linear Dimension of Composite Field
5115 [1963, 672]. Proposed by Harley Flanders, Purdue University

Let k=K, F£Q, all commutative fields. We may form the composite KF
and it is known that [KF:F|<[K:k] if [K:k] is finite. Prove that this in-
equality is true when [K :£] is infinite, provided that [F:%], the linear dimension
of F over k, is countable.

Solution by Oswald Wyler, University of New Mexico. If [K F: F] is finite and
[K:%] infinite, then [KF:F]<[K:Ek] trivially. We assume now that [KF:F]
and [K:k] both are infinite, and that [F:%] is countable. In this case, [KF: F]
=[KF:F][F:k]=[KF:k]=[KF:K][K:k], and card K= [K:k] card k. If
is countable, then F also is countable, and [KF:F]=[KF:F] card F=card
KF=card K[F]=card K=[K:k] card k= [K:k]. If k is uncountable and
x&Q transcendental over %, then the uncountably many elements (x—a)~! of
Q, aCk, are linearly independent over k. It follows that F is algebraic over % if
[F:%] is countable and % uncountable. But then K F=K[F], and since a linear
basis of F over k generates the vector space K [F] over K, we have [KF:K]
<[F:k]. It follows that [KF:K][K:k]=[K:k], so that, again, [KF:F]
=[K:E].

We note that our result is somewhat stronger than that proposed in the
problem.

Also solved by the proposer.

A Double Summation
5116 [1963, 673]. Proposed by David Greenstein, Northwestern Unaversity

Let
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w -1 Atk

S(4) =322

- (4 real).
j=1 k=0 ]!k! ’ )

An engineer needs asymptotic information about S(4) as A— . He conjectures
that ¢245(4)—1. Prove or disprove his conjecture.

Solution by R. G. Buschman, State University of New York at Buffalo. Con-
sider

N N An+k N n—1 An+k N k-1 An+k N A2n
22 =22 + 22 + 2
n=0 k=0 nlk! n=1 k=0 nlk! k=1 n=0 nlk! n=0 nln!

If we pass to the limit on N, then we have
e* = 25(4) + I:(24),
where I, is the modified Bessel function of the first kind. This yields the explicit
formula for S(4),
5(4) = 3{er — In(24)},
to which the known asymptotic expansion for I can be applied, giving
e24S(4) = 3 + 0(4712).

Also solved by C. R. Berndtson and C. G. Fain, M. S. Demos, G. Di Antonio, D. Z. Djokovig,
Ralph Greenberg, Emil Grosswald, Eldon Hansen, G. W. Hedstrom, J. Koekoek, E. L. Magnuson,
Stanton Philipp, D. Ramakotaiah, J. J. Schiffer, Arnold Singer, Franklin C. Smith, R. P. Tap-
scott, Rory Thompson and Henry Gray, W. F. Trench, J. H. van Lint, W. C. Waterhouse, A.
Weinmann, J. Ernest Wilkins, Jr., Oswald Wyler, M. Wyman, and the proposer.

Roots of Unity

5117 [1963, 673]. Proposed by L. Carlitz, Duke University
Let n, { be roots of unity such that

an+b+c=0 =1, 1),

where a, b, ¢ are nonzero integers. Show that the only possibilities are given by
a=b=c,n=w, {=w? 0*t+w+1=0.

Solution by Harley Flanders, Purdue University. We have —an=>b{-+c and
—aij=bf+c. We multiply these expressions, noting that =771, {={"! since
these are roots of unity:

a? = b2+ ¢+ be(¢ + ¢7Y).

Since bc#0 we conclude that {+{~!=u=rational, and {2—u{+1=0. Thus { is
quadratic over the rationals so that if { is a primitive nth root of unity, then
n=1, 2, 3, 4, 6 are the only possibilities; by hypothesis #5£1, n5£2. We rule out
n=4 because if {=1, 2= —1, then 75 is a unity root in the field Q(z) so that
n= +1. But a(+%)+bi+c5£0. This leaves two cases:
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Pt ot+1=0 (=24 (=1)(—w)+1=0,

where w is a primitive cube root of unity so that —w is a primitive sixth root.
This gives the desired result (with the trivial alternative a= —b=c, 7=0w?,
= —a)

Also solved by W. J. Blundon, S. Chowla and A. M. Vaidya, Martin Cohen, Irving Gerst,
Gordon Pall and Olga Taussky Todd, B. Sapolsky, Oswald Wyler, L. Zalcman, and the proposer.

A Nonnegative Trigonometric Polynomial
5118 [1963, 673]. Proposed by I. J. Schoenberg, University of Pennsylvania
Let the integer # be given, #» =2. Show that if
(1) Tt =14 aicost -+ bysint -+ a, cos nt + b,sin nt = 0
for all real ¢, then
) ay = sec(w/2n)
with equality if and only if

3) T@#) =1+ (sec 1) cost + (=D~ (tan 5) cos #nt.

2n n n
Solution by the proposer. 1. Observe that the relation
4) aycos (w/2n) + 37(w + w/2n) + 3T (wr — w/2n) =1

holds for every T(t) of the form (1). Now (1) and (4) imply that a, cos (w/2n)
=1, whence (2) follows.

2. Let us now assume that (2) holds with the equality sign. But then (4)
and (1) imply that T(w-+w/2n)=T(r—m/2n)=0, and therefore also that
T'(r+w/2n)=T'(r—=/2n) =0. These four equations are easily shown to fur-
nish (3) as the only solution. There remains to show that the trigonometric poly-
nomial (3) is nonnegative for all real £, which is equivalent to showing that

T T 1 ™
(5) (cos—)T(t+1r) = —cost+ cos——+ — sin —cosnt = 0
2n 2n  n 2n
for all ¢. This fact is evident for ¢ in the interval [4m, w] and, since (5) is an even
periodic function, there remains to consider only the case 0 <¢=<3m.
Writing ¢() = —cos t+cos (w/2n), ¥(t) = (1/n) sin w/2n cos nt, we observe:
(i) o(r/2n) =¢(m/2n)=0;
(i) ¢'®)> | @) for m/2n<t=<w/2,
[because ¢'(f) =sin ¢>sin (7/2n) = lsin (m/2n) sin ntl = lxp’(t)l I;
(iii) ¥'(t) <0 and |¢/(t)| >sin t=¢'(t) for 0<t<m/2n,
[because (sin nt)/sin ¢ decreases over [0, 7/2n], so that

(sin nt)/sin t > (sin n(x/2n))/sin (x/2n)].
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Finally, (i) and (ii) show that ¢(¢) +¢ (&) >0 for 7/2n<t=w/2, also (i) and
(iii) imply the same inequality for 0 <t <m/2xn.
Also solved by L. Carlitz.

Convergent Sequence

5120 [1963, 673].. Proposed by D. C. Olivier, Carleton College, Northfield,
Minn.

Define a sequence {v,} = {v,(x) } recursively by v1=%, vpp1=2-+1/n)v,—1,
nz1. It is not hard to show that {2,} converges for at most one real value of x.
Find x such that {v,} converges.

Solution by Roy O. Davies, The University, Leicester, England. By induction
we have

9, =13 2n — 1)(x — s,)/(n — 1)), n=12---,

where ;=0 and s,ji=s,+[n!/1-3--- 2u+1)]. If {v,} converges then
x—s,—0, whence
d n! 1

x = lims, = = —7a—1.
7»5:11-3---(2n-l-1) 2"

(See, e.g., Bromwich, Infinite Series, 1st ed., p. 169.) For this x we find that
o= [0/2n + D] + [n(n + 1)/Cn + DCn + 3)] + - - -,
and since the rth term here is increasing and tends to 277, it follows that v,

indeed tends to 1 +%+4 - - - =1.

Also solved by I. N. Baker, L. Carlitz, A. J. Casson, J. H. E. Cohn, H. D. Friedman, D. R.
Hayes, Fulton Koehler, J. Koekoek, R. H. C. Newton, Ron Rietz, A. A. Sastry, H. Schwerdtfeger,
D. W. Showalter, Arnold Singer, Robert Singleton, J. H. van Lint, K. H. van Weerden, J. Ernest
Wilkins, Jr., Oswald Wyler, Max Wyman, and the proposer.

RECENT PUBLICATIONS AND PRESENTATIONS

Ep1TED BY R. A. ROSENBAUM, Wesleyan University
CoLLABORATING Ep1Tors: K. O. May, Carleton College and E. P. VANCE, Oberlin College

Materials intended for review should be sent directly as follows: Books: R. A. Rosen-
baum, Wesleyan University, Middletown, Conn. Programmed Materials: K. O. May, Carle-
ton College, Northfield, Minn. Films: E. P. Vance, Oberlin College, Oberlin, Ohio.

Lectures on Tensor Calculus and Differential Geometry. By Johan C. H. Gerret-
sen, P. Noordhoff N. V., Groningen, 1962. xii+204 pp. Dfl.25.

Here is an unusual introduction to the methods and principal results of the
differential geometry of general manifolds. Frequently the development of this
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An Elementary Introduction to the Theory of Probability. By B. V. Gnedenko and
A. Ya. Khinchin. Translated from the fifth Russian edition by Leo F.
Boron. Dover, New York, 1962. xii+130 pp. $1.45.

The high reputations of the authors and the fact that this is the fifth edition
since 1945 both vouch for the quality of this small book. Part I, Probabilities,
is a 54-page treatment of the standard rules for probability in finite sample
spaces: addition, multiplication, conditional probabilities, independent events,
Bayes’ formula, the binomial (Bernoulli) distribution, and Bernoulli's theorem
with Chebyshev’s proof. (A minor correction: p. 51, line 7, read “distance more
than” in place of “distance not more than.”) The hypergeometric distribution
is not included. Part II, Random Variables, is a 59-page treatment of random
variables and their distribution laws, mean values, mean values of sums and
products (of independent r.v.), mean deviation, standard deviation, probable
deviation, Chebyshev’s inequality and laws of large numbers, and normal dis-
tributions. The expected value operator is not used: instead, the authors use a
bar to denote mean value. The Conclusion, 5 pages, sketches the development of
probability theory from Fermat, Pascal, and Huygens to the present, with spe-
cial attention to the contributions of Russians, but with credit also to the
United States, France, Great Britain, Sweden, Japan, and Hungary. The dis-
cussion of the central limit theorem gives an excellent idea of why the normal
distribution arises naturally in scientific applications.

The exposition is notably clear. New concepts are well motivated. Set lan-
guage and symbolism are not used. The example-rule-example pattern is fol-
lowed in almost every section. In general, no mathematics beyond high school
algebra is required, though a few calculations use summation sigmas. There
are no exercises, but the book would be an excellent supplement for elementary
courses in probability in high school or college. The many examples illustrate
how probability applies to a broad variety of practical and theoretical situa-
tions. It is unavoidable that, in such a brief treatment, some fine points will be
ignored (for example, in connection with the probability distribution of the
square or absolute value of a random variable which may assume negative and
positive values), but the authors have succeeded admirably in presenting sig-
nificant parts of probability at this level.

GEORGE B. THOMAS, JR., Massachusetts Institute of Technology

Linear Algebra and Matrix Theory. By E. D. Nering. Wiley, New York, 1963.
xi+289 pp. $6.95.

This book should prove to be satisfactory as a text for a one semester course
at an advanced undergraduate level. A rigorous treatment of most of the topics
that normally make up a linear algebra course is given in the first five (of the
six) chapters. These chapter headings are: I, Vector Spaces; II, Linear Trans-
formations and Matrices; I1I, Determinants, Eigenvalues, and Similarity Trans-
formations; IV, Linear Functionals, Bilinear Forms, Quadratic Forms; V,
Orthogonal and Unitary Transformations, Normal Matrices. In the last chap-
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ter, Selected Applications of Linear Algebra, good but brief treatments of ap-
plications in fields such as linear programming and communication theory are
given.

The author covers a good deal of material in a few pages. One omission that
might bear mentioning is a discussion of the rational canonical forms for matri-
ces under similarity. There is no development of field theory in this book. And
no theory of polynomial forms is given. Knowledge of some of the elements of
this theory is needed at various places, such as in the proof of the Hamilton-
Cayley Theorem. In order to gain much insight into most of the applications
discussed in the last chapter, a student would have to do a considerable amount
of background reading. (A bibliography is given at the end of each section of
this chapter.)

A good and ample supply of problems of various degrees of difficulty is found
at the ends of the various sections of the chapters. Solutions or hints to solu-
tions to many of these exercises are given at the end of the book.

P. W. CarrUTH, Swarthmore College

Solved and Unsolved Problems in Number Theory. Vol. 1. By Daniel Shanks.
Spartan Books, Baltimore, 1963. ix-+229 pp. $7.50.

The title of this book is somewhat misleading. It is not a collection of prob-
lems, but a highly individualistic introductory textbook in number theory in
which “problem—solution” is given preference over “theorem—proof.” This
is not to say that there are no theorems, but that the theorems are regarded not
as end-products, but rather as stepping stones to the solutions of problems on
which the author has already focused the reader’s attention.

In the first chapter, for which the substratum is the problem of perfect
numbers and Mersenne primes, one finds the unique factorization theorem, the
theorems of Fermat and Euler, Euler’s and Gauss’s criteria and the law of
quadratic reciprocity, all developed without mention of congruences, and inter-
spersed with historical remarks, classical conjectures and much information on
the results obtained by modern computers. In the second chapter congruences
are introduced, and the group theoretic structure of the residue class groups
is studied in much greater detail than is customary. The third chapter, built
upon the Pythagorean theorem, ranges over Fermat's equation x"+y"=32" and
its various elementary special cases, Pell’'s equation and continued fractions, and
Lucas’s criterion for primality of Mersenne numbers, with digressions on such
matters as quantum physics, Pythagorean philosophy, and a purely arithmetic
derivation of the Leibniz identity v/4=1—-1/34-1/5— - - ..

This is clearly not the book for a student who likes the orderly, polished
and general (if not abstract) exposition to be found in most textbooks. On the
other hand, the author has something to say, both philosophically and mathe-
matically, which should be stimulating to students and enlightening even to
professionals. No description of the contents can impart the flavor of the book;
the interested reader is advised to examine a copy.

W. J. LEVEQUE, University of Michigan
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arguments for a position are sometimes questionable in detail, e.g., using the
early creativity of a few exceptional scientists to justify changing the structure
of the entire public educational system, and sometimes wrong in basic concept,
e.g., claiming that “mathematics is concerned with operations on abstract sym-
bols,” ignoring the fact that the operations act on mathematical objects. The
author takes a bold stand in insisting that all ethical and moral imperative
statements are predictions that the probability for survival of the individual
and the species is decreased if a prohibited act is performed. This seems at once
too nonempirical (often one can’t compute the relevant possibilities, so one can’t
check the predictions) and too restrictive a definition to render the meaning of
many such statements. As a general criticism, this reviewer thinks that the
author, having found the single cause of all human behavior—survival the goal,
and the scientific method the survival technique—is not sufficiently careful to
check that his explanation accounts for all the facts. Finally, the book would
serve its prime function better if it provided a bibliography for those readers
who want to learn more about some of the sciences but aren’t sure how to go
about it.
R. C. MjoLsNEss, Los Alamos

Algebraic Logic. By P. R. Halmos. Chelsea, New York, 1962. 271 pp. $3.75.

By algebraic logic the author means that branch of general algebra which
deals with algebraic structures mirroring in some sense certain formal logics.
Examples of such structures, in historical order of investigation, are Boolean,
Brouwerian, relation, projective, and cylindric algebras. Subsequent to the
study of these algebras, Halmos introduced and investigated monadic and poly-
adic algebras, and the present monograph is the collection of all the articles
Halmos has written on these two kinds of algebras. Polyadic algebras have alge-
braic operations mirroring sentential connectives, first-order quantifiers, and
changes of variables, while monadic algebras are just a very special kind of
polyadic algebras. The class of all polyadic algebras of a given degree is an
equational class, and hence by any standard is a fitting object of study; but the
polyadic algebras exactly corresponding to first-order logic are the locally finite
ones of infinite degree which, unfortunately, do not form an equational class.
The general polyadic algebras do mirror closely certain quite general logics with
infinitely long expressions which are now being intensively studied.

As Halmos indicates, one of the main problems in algebraic logic is to state
and prove algebraically various important theorems of logic. This was done by
Tarski and later by Halmos for Godel’s completeness theorem. Halmos also
treats algebraically, e.g., the description operator. The program has been carried
through by Daigneault for Feferman-Vaught generalized products and for
Craig’s interpolation theorem. Notably still lacking is an algebraic treatment
of Gédel’s incompleteness theorem. It should also be mentioned that Daigneault
and Keisler have generalized Halmos’ treatment of the completeness theorem
by showing that any simple polyadic algebra of infinite degree is isomorphic to
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an QO-valued functional algebra. An open problem is to characterize those
polyadic algebras of finite degree which are isomorphic to O-valued functional
algebras; the reviewer has shown that not every simple algebra is of this kind.
Halmos’ book is highly recommended as an introduction for those who wish
to study logic from a purely algebraic point of view.
DonaLD MoNEK, University of Colorado

An Introduction to the Calculus of Variations. By L. A. Pars. Wiley, New York,
1962. 350 pp. $8.50.

This book is somewhat similar to Bliss’ Carus Monograph on the calculus
of variations but is wider in scope. It was the author’s intent to “give to the
non-specialist a good insight into the fundamental ideas of the subject, a good
working knowledge of the relevant techniques, and an adequate starting point
for further study and research .. ..” It is also somewhat similar to Akhiezer’s
Calculus of Variaitons (English translation, Blaisdell Publishing Co., New York,
1962). There has been a need for books suitable for an introductory course in
the calculus of variations. It is good to have another book as a possible choice
for a text book in the subject.

The first five chapters are concerned with the ordinary problem in the plane.
One chapter is devoted to concrete problems illustrating the theory. The multi-
plier rule for an isoperimetric problem in the plane is derived in the sixth chapter,
and there is a brief discussion of the relation of the isoperimetric problem to
Sturm-Liouville systems. There are many diagrams illustrating the geometric
details of particular problems.

In chapter seven necessary conditions and the fundamental sufficiency theo-
rem are given for the ordinary problem in three dimensions with an indication
how to extend the theory to z-dimensions. It seems unnecessary to develop the
theory first for the plane and then repeat the process for higher dimensions.
It would have been simpler to treat the problem for #z-dimensions from the start.
Any objection a reader might have to this would be taken care of by the many
concrete examples.

In chapter eight we find the multiplier rule for the Lagrange problem with #
dependent and one independent variable. The next chapter deals with the
parametric problem in the plane. The last chapter is entitled “Multiple Inte-
grals.” A more appropriate title might be “Dirichlet’s Principle.” Here some
properties of harmonic functions are established. Dirichlet’s principle is proved
for a circular area and then, by following a method due to Poincaré, the prin-
ciple is established for the general case. Since, as the author points out, a “higher
standard of sophistication” is needed to follow a proof of Dirichlet’s principle, it
might have been preferable to use this sophistication on some theorems of
Tonelli about direct methods in general.

There are thirty-five exercises at the end of the book that would keep a
student very busy.

ALiNE H. FrINK, Pennsylvania State University
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Electronic Computers: Fundamentals, Systems, and Applications. Edited by
Paul von Handel. Springer-Verlag, Vienna, and Prentice-Hall, Englewood
Cliffs, N. J., 1961. 235 pp. $13.50.

The stated objective of this book is “to present an over-all view of various
types of modern electronic computers” for “people . .. who have no special
knowledge of computers.” The main body of the work is by H. W. Gschwind,
M. G. Jaenke and R. G. Tantzen of Holloman Air Force Base. There are chap-
ters on digital computers, analog computers, digital differential analyzers and
computing control systems.

In the chapter on digital computers such topics as over-all system organiza-
tion, storage types, number systems, programming and applications are .dis-
cussed. In the analog chapter one finds a discussion of presently available com-
ponents, analog computer set-up and scaling. In these chapters there is a qualita-
tive discussion of the error but no discussion of stability. In the case of the
digital differential analyzer, an effort at error analysis is made but it does not

seem to the reviewer to be adequate.
F. J. Murray, Duke University

Diophantine Approximations. By Ivan Niven. Wiley, New York, 1963. 68 pp.
$5.00.

This self-contained monograph is an extension of the Hedrick lectures de-
livered by the author at the 1960 summer meeting of the MAA. It does not
offer a complete survey of the field but is confined to the following topics: basic
results on homogeneous and nonhomogeneous approximations of real numbers
and analogous results for complex numbers; asymmetric approximation of irra-
tional numbers; fundamental properties of the multiples of an irrational num-
ber, for both fractional and integral parts. A unique feature of this monograph
is that continued fractions are not used. The inclusion of basic results for com-
plex numbers is noteworthy, as well as the presence of many new proofs offered
here for the first time. An attractive feature is the inclusion of a section entitled
“Further results” at the end of each chapter to provide a bibliographic account
of closely related work. The author’s exposition is concise and lucid and the
monograph will be extremely helpful and informative to specialist and non-
specialist alike.

W. E. Brigas, University of Colorado

BRIEF MENTION

Self-Organizing Systems. Edited by M. C. Yovits, G. T. Jacobi, and G. D. Goldstein.
Spartan Books, Washington D. C., 1962. 563 pp. $12.00.
Proceedings of a 1962 conference of workers in several of the disciplines concerned
with Self-Organizing Systems—Mathematics, Physics, Psychology, Biology, Embryol-
ogy, Neurophysiology, etc.

Vector Analysis Including the Dynamics of a Rigid Body. By G. D. Smith. Oxford, New
York, 1962, viii+192 pp. $4.00.
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Via Vector to Tensor. By W. G. Bickley and R. E. Gibson, Wiley, New York, 1962.
xvi+152 pp. $4.50.

These two texts are primarily for engineering students, and rely heavily on geo-
metrical or physical motivations, arguments, and interpretations. The first includes five
chapters on three-dimensional vector calculus, and concludes with a chapter on some
simple problems in Newtonian mechanics. The second has a four-chapter “refresher
course” in three-dimensional vector calculus followed by five chapters on the rudiments
of tensor calculus, with some applications.

Fourier Series and Boundary Value Problems, 2nd ed. By Ruel V. Churchill. McGraw-
Hill, New York, 1963. viii+248 pp. $6.75.
An extensive revision of the original 1941 edition of this well-known standard work.

Heat and its Workings. By Morton Mott-Smith. Dover, New York, 1962. 165 pp. $1.00.
First publication, 1933.

Technical Mathematics, 2nd ed. By H. S. Rice, and R. M. Knight. McGraw-Hill, New
York, 1963. xiv+626 pp. $7.95.

Nonlinear Problems. Edited by Rudolph Langer. University of Wisconsin, 1963. xiii+321
pp. $7.50.
Proceedings of a Symposium conducted by the U. S. Army Research Center at
Madison, Wisconsin, April 30-May 2, 1962.

Essential Business Mathematics, 4th ed. By L. R. Snyder. McGraw-Hill, New York,
1963. x+513 pp. $7.50.

An Introduction to Mathematical Probability. By J. L. Coolidge. Dover, New York, 1962.
xii+214 pp. $1.35.
A republication of a classic which first appeared in 1925.

Principles of Mathemaltics, 2nd ed. By Carl Allendoerfer and Cletus Oakley. McGraw-
Hill, New York, 1963. xi+540 pp. $7.95.
A considerably revised edition of this widely used text.

Complex Variable Theory and Transform Calculus with Technical Applications. 2nd ed.
By N. W. McLachlan. Cambridge University Press, New York, 1963. xi+388 pp.
$2.95,

Reprint of Second Edition, which appeared in 1953. Date of first edition, 1939.

Algebraic Curves. By Robert J. Walker. Dover, New York, 1962. x+215 pp. $1.60.
This is a republication of a well-known work first published in 1950.

Probabilities and Life. By Emile Borel. Translated from the French by Maurice Baudin.
Dover, New York, 1963. vi+88 pp. $1.00.
This is a new English translation of the fourth French edition of a little book first
published in 1943, in which the calculus of probabilities is applied to a number of ques-
tions which relate either to everyday living or to illness and death.

Regular Polytopes. By H. M. S. Coxeter. Macmillan, New York, 1963. xix+321 pp.
$4.50.
This is the second edition of a book which first appeared in 1948.

Antiplane Elastic Systems. Ergebnisse der Angewandten Mathematik, No. 8. By L. M.
Milne-Thompson. Academic Press, New York, 1963. vii+265 pp. $11.00.

Mathematical Theory of Elastic Equilibrium (Recent results). Ergebnisse der Ange-
wandten Mathematik, No. 7. By Giuseppe Grioli. Academic Press, New York, 1962.
viii+167 pp. $5.50.
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Mathematical Optimization Techniques. By Richard Bellman, editor. University of Cali-
fornia Press, 1963. xii+ 346 pp. $8.50.

Papers presented at the Symposium on Mathematical Optimization Techniques,
Santa Monica, October 1960. The book is divided into four parts: I. Aircraft, Rockets,
and Guidance; II. Communication, Prediction, and Decision; III. Programming, Combi-
natorics, and Design; IV. Models, Automation, and Control.

Angles and In- and Ex-Elements of Triangles and Telrahedra. By Kesiraju Satyanarayana.
Bangalore Press, Bangalore City, 1962. xiii+135 pp. 5 Rupees.

Journal of Research in Science Teaching, vol. 1, Issue 1. J. Stanley Marshall, editor.
Wiley, New York, 1963. 98 pp.

Introductory Statistical Mechanics for Physicists. By D. K. C. MacDonald. Wiley, New
York, 1963. ix+176 pp. $6.75.
Elementary “applied” statistical mechanics with emphasis on solid state phenomena.

Quantum Mechanics for Mathemalicians and Physicists. By Ernest Ikenberry. Oxford
University Press, New York, 1962. 269 pp. $8.00.
A fresh concise introduction to the elements of the theory emphasizing the mathe-
matical aspects of its development. A useful section-by-section bibliography is included.

NEWS AND NOTICES
Epitep BY RaouL HAtLPERN, SUNY at Buffalo

Readers are invited to contribute to the general interest of this department by sending
news items to Raoul Hailpern, Mathematical Association of America, SUNY at Buffalo
(University of Buffalo) Buffalo, New York 14214. Items must be submitted at least two months
before publication can take place.

PERSONAL ITEMS

Professor H. L. Alder, University of California, Davis, represented the Association
at the Convocation held as part of the Dedication of the California State College at
Hayward on May 2, 1964.

Professor R. R. Stoll, Oberlin College, represented the Association at the dedication
of the Charles F. Kettering Science Center at Ashland College on March 14, 1964.

Brigham Young University: Assistant Professors K. L. Hillam and L. J. Olpin have
been promoted to Associate Professors; Mr. H. E. Wickes has been promoted to Assistant
Professor; Assistant Professor H. G. Moore has been granted a leave of absence and
awarded an NSF Science Faculty Fellowship for study at the University of California
at Santa Barbara.

Assistant Professor L. A. Fiedler, Black Hawk College, has been promoted to
Associate Professor and appointed Acting Head of the Mathematics Department.

Professor Karl Menger, Illinois Institute of Technology, has been appointed Visiting
Professor for the spring semester at the University of Arizona.

Associate Professor Gloria Olive, Anderson College, has been promoted to Professor
and Chairman of the Mathematics Department.

Professor Emeritus L. K. Adkins, Wisconsin State College, LaCrosse, died on Novem-
ber 11, 1963. He was a charter member of the Association.
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Professor Emeritus J. E. Dotterer, Manchester College, died on January 21, 1964.
He was a charter member of the Association.

Assistant Professor Corinne R. Hattan, University of Illinois, died on February 7,
1964. She was a member of the Association for 26 years.

Professor S. S. Wilks, Princeton University, died on March 8, 1964. He was a member
of the Association for 23 years.

THE MATHEMATICAL ASSOCIATION OF AMERICA
Official Reports and Communications

APRIL MEETING OF THE MARYLAND-DISTRICT OF COLUMBIA-VIRGINIA SECTION

The annual Spring meeting of the Maryland-District of Columbia-Virginia Section
of the MAA was held at the United States Naval Academy, Annapolis, Maryland, on
April 27, 1963. Professor Herta T. Freitag, Chairman of the section, presided. The invited
address on “Men and Mathematics: a Plea for the Historical Sense in Mathematics,”
was delivered by Dr. Philip J. Davis, Chief Numerical Analysis Division, National
Bureau of Standards, Washington, D. C., the recipient of the Chauvenet Prize, 1963.

At the business meeting the following officers were elected: Chairman, Dr. John W.
Wrench, Jr., Applied Mathematics Laboratory, David Taylor Model Basin, Washing-
ton, D. C.; Vice Chairmen, Professor George H. Butcher, Howard University, Washing-
ton, D. C. and Professor Raymond W. Moller, Catholic University of America,
Washington, D. C.; Secretary, Professor Samuel S. Saslaw, U. S. Naval Academy,
Annapolis, Maryland; Treasurer, Professor Stanley B. Jackson, University of Maryland,
College Park, Maryland.

The following program was presented:

1. Tailgater, a simultaneous compiler, by Professor H. Kaplan, U. S. Naval Academy.

2. A theory of primes and Cramer’s conjecture, by Commander F. B. Correia, USN, U. S. Nava
Academy.

3. Convex metrics, by Dr. Christoph Witzgall, National Bureau of Standards, Washington,
D.C.

4. Error analysis of the magnetic aititude prediction program for the Tiros satellites, by W. H.
Land, Jr., I.B.M. Corporation, Bethesda, Maryland.

5. A least squares unit vector perpendicular to a given set of vectors, by H. E. Castro, U. S.
Naval Weapons Laboratory, Dahlgren, Virginia.

6. Ship location by means of an acoustic range, by Professor R. P. Bailey, U. S. Naval Academy.

7. A theorem on convex programming, by Dr. A. J. Goldman, National Bureau of Standards,
Washington, D. C.
S. S. SasLAw, Secretary

DECEMBER MEETING OF THE MARYLAND-DISTRICT OF COLUMBIA-
VIRGINIA SECTION

The annual Fall meeting of the Maryland-District of Columbia-Virginia Section of
the MAA was held at American University, Washington, D. C. on Saturday, December
14, 1963. Dr. John W. Wrench, Jr., Chairman of the section, presided. Dr. F. Joachim
Weyl, Deputy Chief and Chief Scientist, gave the invited address on “Elementary
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